Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 47, Issue 4


Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?

Dariusz Świerk
  • Corresponding author
  • Poznań University of Life Sciences, Department of Landscape Architecture, ul. Dąbrowskiego 159, 60-594 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michał Krzyżaniak
  • Poznań University of Life Sciences, Department of Landscape Architecture, ul. Dąbrowskiego 159, 60-594 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Kosiada
  • Poznań University of Life Sciences, Department of Phytopathology, Seed Science and Technology, ul. Dąbrowskiego 159, 60-594 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Urbański
  • Poznań University of Life Sciences, Department of Landscape Architecture, ul. Dąbrowskiego 159, 60-594 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolanta Behnke-Borowczyk
  • Poznań University of Life Sciences, Department of Forest Pathology, ul. Wojska Polskiego 71c, 60-625 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0038


This paper is an attempt to answer the question whether common reed specimens growing in a particular habitat are genetically related. We have tried to identify groups of plants homogeneous in terms of habitat requirements and genetic similarity. Our objective was also to answer the question whether habitat conditions can affect the morphological characteristics of plants. Plants and bottom sediments were collected from 40 sites in central Poland, which differ in soil moisture and the degree of urbanization. Our research and analysis confirm the hypothesis to a certain extent. During the study, we identified three groups of plants homogeneous in terms of habitat and genetic factors (CVA model), which constitute 20% of all examined plants. In our opinion, further research is required on a larger population of P. australis in a larger area. The research revealed that plants growing in moist and wet areas were characterized by higher content of chlorophyll in leaves, longer stems as well as thicker and wider laminae. The common reed plants preferred anthropogenic substrates, which did not contain many nutrients, but were abundant in calcium. Our study confirmed the high tolerance of P. australis to soil salinity.

Key words: Phragmites australis; genetic variability; morphological features; soil and bottom sediment chemical content


  • Antonielli, M., Pasqualini, S., Batini, P., Ederli, L., Massacci, A. et al. (2002). Physiological and anatomical characterisation of Phragmites australis leaves. Aquatic Botany 1(72): 55–66.Google Scholar

  • Arnon, D.I. (1949). Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1–15.PubMedCrossrefGoogle Scholar

  • Björk, S. (1967). Ecologic investigation of Phragmites communis Studies in theoretic and applied limnology. Folia Limnol. Scand. 14: 1–248.Google Scholar

  • Brix, H. (1999). Genetic diversity, ecophysiology and growth dynamics of reed Phragmites australis Aquatic Botany 1999(64): 179–184.Google Scholar

  • Brownlee, C. (2002). Role of the extracellular matrix in cell-cell signalling: Paracrine paradigms. Current Opinion in Plant Biology 5(5): 396–401. CrossrefPubMedGoogle Scholar

  • Chen, K.-M., Wang, F., Wang, Y.-H., Chen, T., Hu, Y.-X. et al. (2006). Anatomical and chemical characteristics of foliar vascular bundles in four reed ecotypes adapted to different habitats. Flora - Morphology, Distribution, Functional Ecology of Plants 201(7): 555–569. CrossrefGoogle Scholar

  • Child, R.D., Summers, J.E., Babij, J., Farrent, J.W. Bruce, D.M. (2003). Increased resistance to pod shatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Journal of Experimental Botany 54(389): 1919–1930. CrossrefPubMedGoogle Scholar

  • Clevering, O.A., Brix, H. Lukavská, J. (2001). Geographic variation in growth responses in Phragmites australis Aquatic Botany 69(2): 89–108.CrossrefGoogle Scholar

  • Clevering, O.A. Lissner, J. (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis Aquatic Botany 64(3–4): 185–208. CrossrefGoogle Scholar

  • Coops, H. Van der Velde, G. (1996). Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris Aquat. Bot. 53: 175–185.CrossrefGoogle Scholar

  • Curn, V., Kubátová, B., Vávrová, P., Krivácková-Suchá, O. Cížková, H. (2007). Phenotypic and genotypic variation of Phragmites australis Comparison of populations in two human-made lakes of different age and history. Aquatic Botany 86(4): 321–330. CrossrefGoogle Scholar

  • Dinka, M. (1986). The effect of mineral nutrient enrichment of Lake Balaton on the common reed Phragmites australis Folia Geobot. Phytotax. 21: 65–84.CrossrefGoogle Scholar

  • Doyle, J., Doyle, J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.Google Scholar

  • Dykyjová, D., Hejny, S. Kvet, J. (1973). Proposal for international comparative investigations of production by stands of reed Phragmites communis Folia Geobot. Phytotax. 8: 435–442.CrossrefGoogle Scholar

  • Dykyjová, D. Hradecká, D. (1976). Production ecology of Phragmites communis I. Relations of two ecotypes to microclimate and nutrient conditions of habitat. Folia Geobot. Phytotax. 11: 23–61.CrossrefGoogle Scholar

  • Engloner, A.I. (2004). Annual growth dynamics and morphological differences of reed Phragmites australis [Cav.] Trin. ex Steudel) in relation to water supply. Flora – Morphology, Distribution, Functional Ecology of Plants 199(3): 256–262. CrossrefGoogle Scholar

  • Engloner, A.I. (2009). Structure, growth dynamics and biomass of reed Phragmites australis – A review. Flora: Morphology, Distribution, Functional Ecology of Plants 204(5): 331–346. CrossrefGoogle Scholar

  • Enstone, D.E., Peterson, C.A. Ma, F. (2003). Root endodermis and exodermis: Structure, function, and responses to the environment. Journal of Plant Growth Regulation 21: 335–351.Google Scholar

  • Equiza, M.A. Tognetti, J.A. (2002). Morphological plasticity of spring and winter wheats in response to changing temperatures. Functional Plant Biology 29(12): 1427–1436. CrossrefGoogle Scholar

  • Gorai, M., Vadel, A.M., Neffati, M. Khemira, H. (2007). The Effect of Sodium Chloride Salinity on the Growth, Water Status and Ion Content of Phragmites communis Trin. Pakistan Journal of Biological Sciences 10(13): 2225–2230. CrossrefGoogle Scholar

  • Güsewell, S. Klötzli, F. (2000). Assessment of aquatic and terrestrial reed Phragmites australis stands. Wetlands Ecology and Management 8(6): 367–373. CrossrefGoogle Scholar

  • Hardej, M. Ozimek, T. (2002). The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol. Eng. 18: 343–350.CrossrefGoogle Scholar

  • Hartmann, K., Peiter, E., Koch, K., Schubert, S. Schreiber, L. (2002). Chemical composition and ultrastructure of broad bean Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215(1): 14–25. CrossrefPubMedGoogle Scholar

  • Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L. Hartung, W. (2001). The exodermis: A variable apoplastic barrier. Journal of Experimental Botany 52(365): 2245–2264.PubMedCrossrefGoogle Scholar

  • Kaczkowski, J. (2003). Structure, function and metabolism of plant cell wall. Acta Physiologiae Plantarum 25(3): 287–305.CrossrefGoogle Scholar

  • Kawashima, C.G., Berkowitz, O., Hell, R., Noji, M. Saito, K. (2005). Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in arabidopsis. Plant Physiology 137(1): 220–230. CrossrefGoogle Scholar

  • Komosa, A. Roszyk, J. (2006). The causes and prevention of Rogalin Oaks’ death. Acta Agrophysica 7(4): 937–946. (In Polish).Google Scholar

  • Koppitz, H. (1999). Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquatic Botany 64(3–4): 209–221. CrossrefGoogle Scholar

  • Ksenofontova, T. (1988). Morphology, production and mineral contents in Phragmites australis in different waterbodies of the Estonian SSR. Folia Geobot. Phytotax. 23: 17–43.CrossrefGoogle Scholar

  • Lis, J. Pasieczna, A. (2005). Geochemical maps of Poznan and surroundings: Soils, water sediments and reservoirs. 1:100000. Warszawa: Panstwowy Instytut Geologiczny. (In Polish).Google Scholar

  • Lissner, J., Schierup, H.-H., Comı⊠n, F.A. Astorga, V. (1999). Effect of climate on the salt tolerance of two Phragmites australis populations. Aquatic Botany 64(3–4): 317–333. CrossrefGoogle Scholar

  • Liu, Y., Li, X., Liu, M., Cao, B., Tan, H. et al. (2012). Responses of three different ecotypes of reed Phragmites communis Trin.) to their natural habitats: Leaf surface micro-morphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics. Plant Physiology and Biochemistry 51: 159–167. CrossrefGoogle Scholar

  • Lollar, B.S. (2005). Environmental geochemistry. In H.D. Holland K.K. Turekian (Eds.), Treatise on Geochemistry Volume 9 (648 pp.). Elsevier Science.Google Scholar

  • Mann, E.E., Rice, K.C., Boles, B.R., Endres, J.L., Ranjit, D. et al. (2014). Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4(6): e5822. CrossrefGoogle Scholar

  • McKee, J. Richards, A.J. (1996). Variation in seed production and germinability in common reed Phragmites australis in Britain and France with respect to climate. New Phytologist 133(2): 233–243. CrossrefGoogle Scholar

  • Nei, M. Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76(10): 5269–5273.CrossrefGoogle Scholar

  • Neuhaus, D., Kühl, H., Kohl, J.-G., Dörfel, P. Börner, T. (1993). Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquatic Botany 45(4): 357–364. CrossrefGoogle Scholar

  • Ostendorp, W. (1991). Damage by episodic flooding to Phragmites reeds in a prealpine lake: proposal of a model. Oecologia 86: 119–124.CrossrefGoogle Scholar

  • Paucã-Comãnescu, M., Clevering, O.A., Hanganu, J. Gridin, M. (1999). Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquatic Botany 64(3): 223–234. CrossrefGoogle Scholar

  • Rocha, A.C.S., Almeida, C.M.R., Basto, M.C.P. Vasconcelos, M.T.S.D. (2014). Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicology and Environmental Safety 109: 152–160. CrossrefGoogle Scholar

  • Romero, J.A., Brix, H. Comı⊠n, F.A. (1999). Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites australis Aquatic Botany 64(3): 369–380.CrossrefGoogle Scholar

  • Sabba, R.P. Lulai, E.C. (2002). Histological analysis of the maturation of native and wound periderm in potato Solanum tuberosum L.) tuber. Annals of Botany 90(1): 1–10. CrossrefPubMedGoogle Scholar

  • Šmilauer, P. Lepš, J. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press.Google Scholar

  • Šorša, A., Peh, Z. Halamic, J. (2018). Geochemical mapping the urban and industrial legacy of Sisak, Croatia, using discriminant function analysis of topsoil chemical data. Journal of Geochemical Exploration 187(2018): 155–167. CrossrefGoogle Scholar

  • Squires, L. Van der Valk, A.G. (1992). Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can. J. Bot. 70: 1860–1867.CrossrefGoogle Scholar

  • Van der Putten, W.H., Peters, B.A.M. Van der Berg, M.S. (1997). Effects of litter on substrate conditions and growth of emergent macrophytes. New Phytol. 135: 527–537.CrossrefGoogle Scholar

  • Wang, H.L., Hao, L.M., Wen, J.Q., Zhang, C.L. Liang, H.G. (1998). Differential expression of photosynthesis-related genes of reed ecotypes in response to drought and saline habitats. Photosynthetica 35(1): 61–69.CrossrefGoogle Scholar

  • Wang, L.-W., Showalter, A.M., Ungar, I.A. (1997). Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). American Journal of Botany 84(9): 1247–1255.PubMedCrossrefGoogle Scholar

  • White, S.D. Ganf, G.G. (2002). A comparison of the morphology, gas space anatomy and potential for internal aeration in Phragmites australis under variable and static water regimes. Aquat. Bot. 73: 115–127.CrossrefGoogle Scholar

  • Willson, K.G., Perantoni, A.N., Berry, Z.C., Eicholtz, M.I., Tamukong, Y.B. et al. (2017). Influences of reduced iron and magnesium on growth andphotosynthetic performance of Phragmites australis subsp. americanus (North American common reed). Aquatic Botany 137(2017): 30–38. CrossrefGoogle Scholar

  • Zeidler, A., Schneider, S., Jung, C., Melchinger, A.E. Dittrich, P. (1994). The Use of DNA Fingerprinting in Ecological Studies of Phragmites australis (Cav.) Trin. ex Steudel. Botanica Acta 107(4): 237–242. CrossrefGoogle Scholar

  • Zhu, X., Jing, Y., Chen, G., Wang, S. Zhang, C. (2003). Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regulation 41(2): 165–172. CrossrefGoogle Scholar

  • Zwieniecki, M.A., Orians, C.M., Melcher, P.J. Holbrook, N.M. (2003). Ionic control of the lateral exchange of water between vascular bundles in tomato. Journal of Experimental Botany 54(386): 1399–1405. CrossrefPubMedGoogle Scholar

About the article

Received: 2018-03-21

Accepted: 2018-05-10

Published Online: 2018-12-03

Published in Print: 2018-12-19

Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 405–414, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0038.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in