Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 47, Issue 4


Wind characteristics and wind energy assessment in the Barents Sea based on ERA-Interim reanalysis

Chenglin Duan / Zhifeng Wang / Sheng Dong / Liao Zhenkun
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0039


The basic analysis of long-term wind characteristics and wind energy resources in the Barents Sea was carried out from 1996 to 2015 based on the ERA-Interim reanalysis dataset from ECMWF. In recent years, it has been possible to exploit the wind power resources in the Barents Sea at the hub height due to the sea ice cover retreat in the northeast direction. Based on the NSDIC monthly sea ice concentration data, the entire Barents Sea has been partitioned into the ice-free zone and the ice zone. Spatial and temporal distributions of the mean monthly and annual wind speed and wind power density are presented in both zones. Seven points were selected at different locations in the ice-free zone so as to obtain and study the wind roses, the interannual wind power variation and the annual average net electric energy output. For extreme wind speed parameters, the Pearson type III distribution provides better fitness of annual speed extrema and the Gumbel distribution performs well with higher speeds at longer return periods.

Key words: sea ice zoning; offshore wind; wind energy; spatio-temporal variation; extreme wind parameters; Barents Sea


  • Alimi, S.E., Maatallah, T., Dahmouni, A.W. Nasrallah, S.B. (2012). Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia. Renewable Sustainable Energy Reviews 16(8): 5466–5478.Web of ScienceCrossrefGoogle Scholar

  • Ban, M., Perkovic, L., Duic, N. Penedo, R. (2013). Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe. Energy 57(3): 24–29.CrossrefWeb of ScienceGoogle Scholar

  • Capps, S.B. Zender, C.S. (2009). Global ocean wind power sensitivity to surface layer stability. Geophysical Research Letters 36(9). DOI: 10.1029/2008GL037063.Web of ScienceGoogle Scholar

  • Capps, S.B. Zender, C.S. (2010). Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. Journal of Geophysical Research: Atmospheres 115(D9). DOI: 10.1029/2009JD012679.Web of ScienceGoogle Scholar

  • Chadee, X.T. Clarke, R.M. (2014). Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renewable and Sustainable Energy Reviews 30: 45–58.Web of ScienceCrossrefGoogle Scholar

  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P. et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society 137(656): 553–597.Web of ScienceCrossrefGoogle Scholar

  • Dee, D.P. Uppala, S. (2009). Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quarterly Journal of the Royal Meteorological Society 135(644): 1830–1841.CrossrefWeb of ScienceGoogle Scholar

  • Divine, D.V. Dick, C. (2006). Historical variability of sea ice edge position in the Nordic Seas. Journal of Geophysical Research: Oceans 111(C1). DOI: 10.1029/2004JC002851.Google Scholar

  • Eriksson, S., Bernhoff , H. Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable Sustainable Energy Reviews 12(5): 1419–1434.CrossrefWeb of ScienceGoogle Scholar

  • Eurek, K., Sullivan, P., Gleason, M., Hettinger, D., Heimiller, D. et al. (2017). An improved global wind resource estimate for integrated assessment models. Energy Economics 64: 552–567.CrossrefWeb of ScienceGoogle Scholar

  • Fyrippis, I., Axaopoulos, P.J. Panayiotou, G. (2010). Wind energy potential assessment in Naxos Island, Greece. Applied Energy 87(2): 577–586.CrossrefWeb of ScienceGoogle Scholar

  • Gasparatos, A., Doll, C.N., Esteban, M., Ahmed, A. Olang, T.A. (2017). Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable Sustainable Energy Reviews 70: 161–184.CrossrefWeb of ScienceGoogle Scholar

  • Herbaut, C., Houssais, M.N., Close, S. Blaizot, A.C. (2015). Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers 106: 97–115.CrossrefWeb of ScienceGoogle Scholar

  • Holmes, J.D. (2015). Wind loading of structures CRC press. pp: 49–53.Google Scholar

  • Hodges, K.I., Lee, R.W. Bengtsson, L. (2011). A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate 24(18): 4888–4906.Web of ScienceCrossrefGoogle Scholar

  • Hsu, S.A., Meindl, E.A. Gilhousen, D.B. (1994). Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology 33(6): 757–765.CrossrefGoogle Scholar

  • Ingvaldsen, R.B., Asplin, L. Loeng, H. (2004). Velocity field of the western entrance to the Barents Sea. Journal of Geophysical Research: Oceans 109(C3). DOI: 10.1029/2003JC001811.Google Scholar

  • Karamanis, D., Tsabaris, C., Stamoulis, K. Georgopoulos, D. (2011). Wind energy resources in the Ionian Sea. Renewable Energy 36(2): 815–822.Web of ScienceCrossrefGoogle Scholar

  • Kwok, R. (2009). Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. Journal of Climate 22(9): 2438–2457.CrossrefWeb of ScienceGoogle Scholar

  • Lien, V.S., Schlichtholz, P., Skagseth, Ø. Vikebø, F.B. (2017). Wind-Driven Atlantic Water Flow as a Direct Mode for Reduced Barents Sea Ice Cover. Journal of Climate 30(2): 803–812.Web of ScienceCrossrefGoogle Scholar

  • Liu, W.T., Tang, W. Xie, X. (2008). Wind power distribution over the ocean. Geophysical Research Letters 35(13). DOI: 10.1029/2008GL034172.Web of ScienceGoogle Scholar

  • Onea, F., Raileanu, A. Rusu, E. (2015). Evaluation of the wind energy potential in the coastal environment of two enclosed seas. Advances in Meteorology. 2015. DOI: 10.1155/2015/808617.Web of Science

  • Panofsky, H.A. Dutton, J.A. (1984). Atmospheric Turbulence Wiley, 397 pp.Google Scholar

  • Pavlova, O., Pavlov, V. Gerland, S. (2014). The impact of winds and sea surface temperatures on the Barents Sea ice extent, a statistical approach. Journal of Marine Systems 130: 248–255.Web of ScienceCrossrefGoogle Scholar

  • Perkovic, L., Silva, P., Ban, M., Kranjcevic, N. Duic, N. (2013). Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect. Applied energy 101: 151–160.Web of ScienceCrossrefGoogle Scholar

  • Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O.J., Furevik, B.R. et al. (2011). A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. Journal of Geophysical Research: Oceans 116(C5). DOI: 10.1029/2010JC006402.Web of ScienceGoogle Scholar

  • Shapiro, I., Colony, R. Vinje, T. (2003). April sea ice extent in the Barents Sea, 1850–2001. Polar Research 22(1): 5–10.CrossrefGoogle Scholar

  • Simionato, C.G., Vera, C.S. Siegismund, F. (2005). Surface wind variability on seasonal and interannual scales over Río de la Plata area. Journal of Coastal Research 21(4): 770–783.Google Scholar

  • Szczypta, C., Calvet, J.C., Albergel, C., Balsamo, G., Boussetta, S. et al. (2011). Verification of the new ECMWF ERA-Interim reanalysis over France. Hydrology and Earth System Sciences 15(2): 647.Web of ScienceCrossrefGoogle Scholar

  • Wang, Z., Dong, S., Dong, X. Zhang, X. (2016). Assessment of wind energy and wave energy resources in Weifang sea area. International Journal of Hydrogen Energy 41(35): 15805–15811.Web of ScienceCrossrefGoogle Scholar

  • Yang, W., Tavner, P.J., Crabtree, C.J., Feng, Y. Qiu, Y. (2014). Wind turbine condition monitoring: technical and commercial challenges. Wind Energy 17(5): 673–693.CrossrefWeb of ScienceGoogle Scholar

  • Zheng, C.W. Pan, J. (2014). Assessment of the global ocean wind energy resource. Renewable and Sustainable Energy Reviews 33: 382–391.Web of ScienceCrossrefGoogle Scholar

  • Zheng, C.W., Pan, J. Li, J.X. (2013). Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering 65: 39–48.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-02-02

Accepted: 2018-04-26

Published Online: 2018-12-03

Published in Print: 2018-12-19

Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 415–428, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0039.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in