Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 4

Issues

Impact of the Słupia River waters on microbial communities in the port of Ustka and adjacent Baltic Sea waters

Krzysztof Rychert
  • Corresponding author
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Wielgat-Rychert
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Lemańczyk
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0040

Abstract

The distribution of bacterial and ciliate abundance, ciliate community composition and other parameters were studied during summer along a transect from the mouth of the Słupia River to offshore waters (southern Baltic Sea). Bacteria were examined under an epifluorescence microscope and ciliates were observed under an inverted microscope. Two water masses were identified along the transect. Less saline waters in the river mouth and in the surface layer in the port of Ustka were characterized by high bacterial abundance (5.51–6.16 × 106 ml−1) and low ciliate abundance (0.34–0.90 cells ml−1). More saline waters in the near-bottom zone in the port of Ustka and in the surface layer outside the port contained smaller numbers of bacteria (0.99–2.14 × 106 ml−1) and larger numbers of ciliates (2.65–5.40 cells ml−1). The differences were statistically significant. The separation of the two water masses indicated that the Słupia River exerted a minor impact on the marine waters. The ciliate community composition changed along the transect studied. The main statistically significant difference observed was the low contribution of oligotrichs and choreotrichs to ciliate biomass (3–4%) in less saline waters and their dominance (45–80% of ciliate biomass) in more saline waters.

Key words: ciliates; bacteria; chlorophyll; estuary; microbial food web; Mesodinium rubrum

References

  • Christaki, U., Courties, C., Joux, F., Jeffrey, W.H., Neveux, J. et al. (2009). Community structure and trophic role of ciliates and heterotrophic nanoflagellates in Rhone River diluted mesoscale structures (NW Mediterranean Sea). Aquat. Microb. Ecol. 57: 263–277. .CrossrefWeb of ScienceGoogle Scholar

  • Emeis, K., Christiansen, C., Edelvang, K., Jähmlich, S., Kozuch, J. et al. (2002). Material transport from the near shore to the basinal environment in the southern Baltic Sea II: Synthesis of data on origin and properties of material. J. Mar. Syst. 35: 151–168.CrossrefGoogle Scholar

  • Ferrari, G.M., Bo, F.G. Babin, M. (2003). Geo-chemical and optical characterizations of suspended matter in European coastal waters. Est. Coast. Shelf Sci. 57: 17–24. .CrossrefGoogle Scholar

  • Fleming-Lehtinen, V. Laamanen, M. (2012). Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Est. Coast. Shelf Sci. 102–103: 1–10. .CrossrefGoogle Scholar

  • Foissner, W. Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375–482.Google Scholar

  • Freese, H.M., Karsten, U. Schumann, R. (2006). Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany. Microb. Ecol. 51: 117–127. .CrossrefPubMedGoogle Scholar

  • Garcia-Cuetos, L., Moestrup, Ø. Hansen, P.J. (2012). Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J. Eukaryot. Microbiol. 59: 374–400. .CrossrefWeb of SciencePubMedGoogle Scholar

  • Golubkov, S., Golubkov, M., Tiunov, A. Nikulina, V. (2017). Longterm changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea). J. Mar. Syst. 171: 73–80. .CrossrefGoogle Scholar

  • Gorzen, A. Załupka, A. (2007). Water quality of the Słupia River at Charnowo, Łupawa at Smołdzino, Łeba at Cecynowo in 2006. Słupsk: Provincial Inspectorate for Environmental Protection in Gdansk branch in Słupsk. (In Polish).Google Scholar

  • Griniene, E., Mažeikaite, S. Gasiunaite, Z.R. (2011). Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40: 86–95. .CrossrefWeb of ScienceGoogle Scholar

  • Hammer, Ø., Harper, D.A.T. Ryan, P.D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4(1), 4: 1–9.Google Scholar

  • HELCOM. (1998). The third Baltic Sea pollution load compilation. Helsinki: Balt. Sea Environ. Proc. (No. 70).Google Scholar

  • HELCOM. (2001). Manual for marine monitoring in the COMBINE programme of HELCOM Retrieved September 17, 2017, from http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/en_GB/annex6/

  • Hobbie, J.E., Daley, R.J. Jasper, S. (1977). Use of nucleopore fi lters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar

  • Jeffrey, S.W. Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194.CrossrefGoogle Scholar

  • Johnson, M.D., Beaudoin, D.J., Laza-Martinez, A., Dyhrman, S.T., Fensin, E. et al. (2016). The genetic diversity of Mesodinium and associated cryptophytes. Front. Microbiol. 7, 2017: 1–16. .CrossrefWeb of ScienceGoogle Scholar

  • Jost, G. Pollehne, F. (1998). Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight). Hydrobiologia 363: 107–115.Google Scholar

  • Konkol, H. Wickland, W.M. (2016). Expansion of the port in Ustka. Simulation of wave conditions. Master Thesis, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar

  • Lindholm, T. (1978). Autumnal mass development of the “red water” ciliate Mesodinium rubrum in the Åland Archipelago. Memoranda Soc. Fauna Flora Fennica 54: 1–5.Google Scholar

  • Maeda, M. Carey, P.G. (1985). An illustrated guide to the species of the family Strombidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Univ. Tokyo 19: 1–68.Google Scholar

  • Maritime Office in Słupsk. (2012). Regulation No. 1 of the Director of the Maritime Office in Słupsk regarding determining the port areas and public objects, facilities and installations in the port infrastructure. Gdansk: Official Journal of Law of the Pomeranian Voivodeship from 2012, item. 2103. (In Polish).Google Scholar

  • Marshall, S.M. (1969). Protozoa, order Tintinnida. In J.H. Fraser V.K. Hansen (Eds.), Fiches d’Identification du Zooplankton (pp. 117–127). Copenhagen: Conseil International pour l’Exploration de la Mer.Google Scholar

  • Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V. et al. (2008). The inflow of highly saline water in the Baltic Sea. In R. Feistel, G. Nausch N. Wasmund (Eds.), State and Evolution of the Baltic Sea (pp. 265–309). Hoboken: Wiley Sons.Google Scholar

  • Menden-Deuer, S. Lessard, E. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569–579.CrossrefGoogle Scholar

  • Mironova, E., Telesh, I. Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208–220. .CrossrefWeb of ScienceGoogle Scholar

  • Mironova, E., Telesh, I. Skarlato, S. (2013). Planktonic ciliates of the Neva Estuary (Baltic Sea): Community structure and spatial distribution. Acta Protozool. 52: 13–23. .CrossrefWeb of ScienceGoogle Scholar

  • Mironova, E.I., Telesh, I.V. Skarlato, S.O. (2014). Ciliates in plankton of the Baltic Sea. Protistology 8: 81–124.Google Scholar

  • Naudin, J.-J., Cauwet, G., Fajon, C., Oriol, L., Terzic S. et al. (2001). Effect of mixing on microbial communities in the Rhone River plume. J. Mar. Syst. 28: 203–227.CrossrefGoogle Scholar

  • Renk, H. (2000). Primary production in the southern Baltic. Gdynia: Sea Fisheries Institute Publ. (In Polish).Google Scholar

  • Rychert, K. (2009). Planktonic ciliates in the coastal medium-size river: diversity and productivity. Pol. J. Ecol. 57: 503–512.Google Scholar

  • Rychert, K. Paczkowska, M. (2012). Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (Central Pomerania). Balt. Coast. Zone 16: 97–102.Google Scholar

  • Rychert, K., Kownacka, J., Wielgat-Rychert, M. Pluto-Pradzynska A. (2014). Protozoan communities in the Vistula River estuary (Baltic Sea). Balt. Coast. Zone 18: 39–53.Google Scholar

  • Rychert, K., Spich, K., Laskus, K., Paczkowska, M., Wielgat-Rychert, M. et al. (2013). Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268–276. .CrossrefGoogle Scholar

  • Rychert, K., Wielgat-Rychert, M., Wołoszynek, M. Sojda, G. (2015). Pelagic respiration in the coastal zone of the southern Baltic Sea. Ecohydrol. Hydrobiol. 15: 215–219. .CrossrefWeb of ScienceGoogle Scholar

  • Rychert, K., Kozłowska, J., Krawiec, K., Czychewicz, N., Paczkowska, M. et al. (2016). Annual production to biomass (P/B) ratios of pelagic ciliates in different temperate waters. Oceanol. Hydrobiol. Stud. 45: 388–404. .CrossrefWeb of ScienceGoogle Scholar

  • Sherr, E.B. Sherr, B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293–308.CrossrefGoogle Scholar

  • Stoecker, D.K., Johnson, M.D., de Vargas, C. Not, F. (2009). Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57: 279–310. .CrossrefGoogle Scholar

  • Strüder-Kypke, M.C. Montagnes, D.J.S. (2002). Development of web-based guides to planktonic protists. Aquat. Microb. Ecol. 27: 203–207.CrossrefGoogle Scholar

  • Urrutxurtu, I., Orive, E. de la Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Est. Coast. Shelf Sci. 57: 1169–1182. .CrossrefGoogle Scholar

  • Verity, P.G. Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859–867.CrossrefGoogle Scholar

  • Weisse, T. (2017). Functional diversity of aquatic ciliates. Eur. J. Protistol. 61: 331–358. .CrossrefPubMedGoogle Scholar

  • Wielgat-Rychert, M., Ameryk, A., Jarosiewicz, A., Kownacka, J., Rychert, K. et al. (2013). Impact of the inflow of the Vistula River waters on the pelagic zone in the Gulf of Gdansk. Oceanologia 55: 859–886. .CrossrefWeb of ScienceGoogle Scholar

  • WoRMS. (2017). World Register of Marine Species Retrieved September 18, 2017, from http://www.marinespecies.orgCrossref

About the article

Received: 2018-04-05

Accepted: 2018-06-04

Published Online: 2018-12-03

Published in Print: 2018-12-19


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 429–438, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0040.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in