Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 48, Issue 3


Assessment of the effects of zinc on the growth and antioxidant enzymes in Scenedesmus ellipsoideus Chodat

Hediye Elif Kiliç / Hatice Tunca / Tuğba Ongun Sevindik / Ali Doğru
Published Online: 2019-09-22 | DOI: https://doi.org/10.2478/ohs-2019-0024


This study explores the activity of total superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), biomass accumulation and chlorophyll a content in Scenedesmus ellipsoideus Chodat grown under conditions of varying zinc (Zn) concentrations. In addition, the activity of different SOD isozymes (MnSOD, FeSOD and CuZnSOD) was measured separately to determine the intracellular extent of oxidative stress resulting from Zn toxicity. We found that the activity of FeSOD and MnSOD was induced by lower Zn concentration (2 μg ml−1 and 4 μg ml−1, respectively), whereas CuZnSOD activity was not affected, which indicates that chloroplasts are the first location in S. ellipsoideus cells where superoxide accumulation is accelerated by Zn toxicity. The activity of total SOD and APX was significantly increased by moderate Zn concentrations, probably due to some oxidative stress caused by Zn toxicity. The higher level of Zn application, however, led not only to the inhibition of total SOD and APX activity, but also to the reduction of biomass accumulation and chlorophyll a content. As a result, it can be concluded that the accumulation of superoxide radicals and H2O2 in S. ellipsoideus cells induced by Zn toxicity may be responsible for the reduced growth rate and the impairment of photosynthetic pigments.

Key words: ascorbate peroxidase; glutathione reductase; superoxide dismutase; zinc; Scenedesmus ellipsoideus


  • Aravind, P. & Prasad, M.N.V. (2005). Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol. Bioch. 43(2): 107–116. DOI: 10.1016/j.plaphy.2005.01.002.CrossrefGoogle Scholar

  • Asada, K. (1994). Production and action of active oxygen species in photosynthesis tissues. In C.H. Foyer & P.M. Mullineaux (Eds.) Causes of photooxidative stress and amelioration of defense systems in plants (pp. 77–104). CRC Press Inc, Boca Raton, USA: Fla.Google Scholar

  • Assche, F.V. & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3): 195–206. DOI: 10.1111/j.1365-3040.1990.tb01304.x.CrossrefGoogle Scholar

  • Atici, T., Ahiska, S., Altindag, A. & Aydin, D. (2008). Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sarıyar Dam Reservoir in Turkey. Afr. J. Biotechnol. 7(12): 1972–1977. DOI: 10.5897/AJB2008.000-5044.CrossrefGoogle Scholar

  • ATSDR. (2005). Toxicological profile for zinc. US Department of Health and Human Services. Retrieved April 12, 2012, from http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=54

  • Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot. 68(2): 175–179. DOI: 10.1016/j. envexpbot.2009.11.003.CrossrefGoogle Scholar

  • Baş, L. & Demet, Ö. (1992). Çevresel toksikoloji yönünden bazı agır metaller. Ekoloji. 5: 42–46.Google Scholar

  • Benavides, M.P., Gallego, S.M. & Tomaro, M.L. (2005). Cadmium toxicity in plants. Braz. J. Plant Physiol. 17(1): 21–34. DOI: 10.1590/S1677-04202005000100003.CrossrefGoogle Scholar

  • Beyer, W.F. & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161: 559–566. DOI: 10.1016/0003-2697(87)90489-1.CrossrefPubMedGoogle Scholar

  • Bowler, C., Montagu, M.V. & Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43(1): 83–116. DOI: 10.1146/annurev.pp.43.060192.000503.CrossrefGoogle Scholar

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. DOI: 10.1016/0003-2697(76)90527-3.PubMedCrossrefGoogle Scholar

  • Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytol. 173(4): 677–702. DOI: 10.1111/j.1469-8137.2007.01996.x.CrossrefPubMedGoogle Scholar

  • Cargnelutti, D., Tabaldi, L.A., Spanevello, R.M., Jucoski, G.O., Battisti, V. et al. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65(6): 999–1006. DOI: 10.1016/j.chemosphere.2006.03.037.PubMedCrossrefGoogle Scholar

  • Chen, J., Shiyab, S., Han, F.X., Monts, D.L., Waggoner, C.A. et al. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicol. 18: 110–121. DOI: 10.1007/s10646-008-0264-3.CrossrefGoogle Scholar

  • Cho, U.H. & Park, J.O. (2000). Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1): 1–9. DOI: 10.1016/S0168-9452(00)00227-2.PubMedCrossrefGoogle Scholar

  • Choudhary, M., Jetley, U.K., Khan, M.A., Zutshi, S. & Fatma, T. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotox. Environ. Safe. 66(2): 204–209. DOI: 10.1016/j.ecoenv.2006.02.002.CrossrefGoogle Scholar

  • Dundar, M.S. & Altundag, H. (2007). Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Environ. Monit. Assess. 128(1–3): 177–181. DOI: 10.1007/s10661-006-9303-9.CrossrefPubMedGoogle Scholar

  • Duruibe, J.O., Ogwuegbu, M.O.C. & Egwurugwu, J.N. (2007). Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2(5): 112–118.Google Scholar

  • Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric. Ecosyst. Environ. 106(2–3): 119–133. DOI: 10.1016/j. agee.2004.10.022.CrossrefGoogle Scholar

  • Fisher, N.S. (1981). On the selection for heavy metal tolerance in diatoms from the Derwent Estuary, Tasmania. Mar. Freshwater Res. 32(4): 555–561. DOI: 10.1071/MF9810555.CrossrefGoogle Scholar

  • Foyer, C.H., Descourvieres, P. & Kunert, K.J. (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17: 507– 523. DOI: 10.1111/j.1365-3040.1994.tb00146.x.CrossrefGoogle Scholar

  • Fridovich, I. (1997). Superoxide anion radical (O2. superoxide dismutases, and related matters. J. Biol. Chem. 272(30): 18515–18517. DOI: 10.1074/jbc.272.30.18515.CrossrefPubMedGoogle Scholar

  • Gaur, A. & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci. India 86(4): 528–534.Google Scholar

  • Guang, J.Z., Fu, Q.P., Li, J.Z. & Guang, G.Y. (2012). Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 19: 2918–2929. DOI: 10.1007/s11356-012-0800-9.CrossrefGoogle Scholar

  • Kumar, K.S., Dahms, H.U., Won, E.J., Lee, J.S. & Shin, K.H. (2015). Microalgae – A promising tool for heavy metal remediation. Ecotox. Environ. Safe. 113: 329–352. DOI: 10.1016/j.ecoenv.2014.12.019.CrossrefGoogle Scholar

  • Lamai, C., Kruatrachue, M., Pokethitiyook, P., Upatham, E.S. & Soonthornsarathool, V. (2005). Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Müller ex Vahl) Kützing: A laboratory study. Scienceasia 31: 121–127. DOI: 10.2306/scienceasia1513-1874.2005.31.121.CrossrefGoogle Scholar

  • Lasat, M.M. (2000). The use of plants for the removal of toxic metals from contaminated soils. US: Environmental Protection Agency.Google Scholar

  • Lesser, M.P., Stochaj, W.R., Tapley, D.W. & Shick, J.M. (1990). Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral reefs 8(4): 225–232. DOI: 10.1007/bf00265015.CrossrefGoogle Scholar

  • Lu, CM., Chau, C.W. & Zhang, J.H. (2000). Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis – assessment by chlorophyll fluorescence analysis. Chemosphere 41(1–2): 191–196. DOI: 10.1016/S0045-6535(99)00411-7.Google Scholar

  • Marschner, H. (2012). Marschner's mineral nutrition of higher plants. USA: Academic press pp. 1–672.Google Scholar

  • Mysliwa-Kurdziel, B. & Strzałka, K. (2002). Influence of metals on biosynthesis of photosynthetic pigments. In Physiology and biochemistry of metal toxicity and tolerance in plants (pp. 201–227). Netherlands: Springer Netherlands.Google Scholar

  • MysliwaKurdziel, B., Amirjani, M.R., Strzałka, K. & Sundqvist, C. (2003). Fluorescence Lifetimes of Protochlorophyllide in Plants with Different Proportions of Shortwavelength and Longwavelength Protochlorophyllide Spectral Forms. Photochem. Photobiol. 78(2): 205–212. DOI: 10.1562/0031-8655(2003)0780205FLOPIP2.0.CO2.CrossrefGoogle Scholar

  • Omar, H.H. (2002). Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int. Biodeter. Biodegr. 50(2): 95– 100. DOI: 10.1016/S0964-8305(02)00048-3.CrossrefGoogle Scholar

  • Önem, B., Dogru, A., Ongun Sevindik, T. & Tunca, H. (2018). Preliminary study on the effects of heavy metals on the growth and some antioxidant enzymes in Arthrospira platensisM2 strain. Phycol. Res. 66(1): 23–30. DOI: 10.1111/pre.12202.CrossrefGoogle Scholar

  • Pekey, H., Karakaş, D. & Bakoglu, M. (2004). Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 49(9–10): 809–818. DOI: 10.1016/j. marpolbul.2004.06.029.PubMedCrossrefGoogle Scholar

  • Petersen, R. (1982). Influence of copper and zinc on the growth of a freshwater alga, Scenedesmus quadricauda the significance of chemical speciation. Environ. Sci. Technol 16(8): 443–447.CrossrefGoogle Scholar

  • Prasad, M.N.V. & Strzałka, K. (1999). Impact of heavy metals on photosynthesis. In Heavy metal stress in plants Germany (pp. 117–138). Springer Berlin Heidelberg.Google Scholar

  • Raychaudhuri, S.S. & Deng, X.W. (2000). The role of superoxide dismutase in combating oxidative stress in higher plants. Bot. Rev. 66(1): 89–98.CrossrefGoogle Scholar

  • Rosko, J.J. & Rachlin, J.W. (1977). The effect of cadmium, copper, mercury, zinc and lead on cell division, grown and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull. Torrey Bot. Club 104: 226–275. DOI: 10.2307/2484302.CrossrefGoogle Scholar

  • Ruano, A., Poschenrieder, C.H. & Barcelo, J. (1988). Growth and biomass partitioning in zinc-toxic bush beans Journal Plant Nutr. 11(5): 577–588.CrossrefGoogle Scholar

  • Sagardoy, R., Morales, F., López-Millán, A.F., Abadía, A. & Abadía, J. (2009). Effects of zinc toxicity on sugar beet Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 11(3): 339–350. DOI: 10.1080/01904168809363824.CrossrefGoogle Scholar

  • Saygı, Y. & Yigit, S.A. (2012). Assessment of metal concentrations in two cyprinid fish species Leuciscus cephalus and Tinca tinca captured from Yeniçaga Lake, Turkey. Bulletin Environ. Contam. Tox. 89(1): 86–90. DOI: 10.1007/s00128-012-0647-2.CrossrefGoogle Scholar

  • Schoefs, B. & Bertrand, M. (2005). Chlorophyll biosynthesis – a review. In M. Pessarakli (Ed.), Handbook of Photosynthesis. 2nd Ed. (pp. 37–54). Boca Raton-London-New York-Singapore: CRC Pres book.Google Scholar

  • Sentsova, O.Y. & Maksimov, V.N. (1985). Effects of Heavy Metals on Microorganisms. Usp. Mikrobiol. 20: 227–252.Google Scholar

  • Sgherri, C.L.M., Loggini, B., Puliga, S. & Navari-Izzo, F. (1994.) Antioxidant system in Sporobolus stapfianus changes in response to desiccation and rehydration. Phytochemistry. 35: 561–565. DOI: 10.1016/S0031-9422(00)90561-2.CrossrefGoogle Scholar

  • Solymosi, K., Lenti, K., Mysliwa-Kurdziel, B., Fidy, J., Strzałka, K. et al. (2004). Depending on concentration, Hg2+ reacts with different components of the NADPH: protochlorophyllide oxidoreductase macrodomains. Plant Biol. 6: 358–63. DOI: 10.1055/s-2004-817893.CrossrefGoogle Scholar

  • Sousa, S.F., Lopes, A.B., Fernandes, P.A. & Ramos, M.J. (2009). The Zinc proteome: a tale of stability and functionality. Dalton Trans (38): 7946–7956. DOI: 10.1039/b904404c.Google Scholar

  • Surosz, W. & Palinska, K.A. (2004). Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae. Archives Environ. Con. Tox. 48(1): 40–48. DOI: 10.1007/s00244-004-0163-4.CrossrefGoogle Scholar

  • Tripathi, B.N., Mehta, S.K., Amar, A. & Gaur, J.P. (2006). Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu2+ and Zn2+ Chemosphere 62(4): 538–544. DOI: 10.1016/j.chemosphere.2005.06.031.Google Scholar

  • Tukaj, Z., Bohdanowicz, J. & Aksmann, A. (1998). A morphometric and stereological analysis of ultrastructural changes in two Scenedesmus (Chlorococcales, Chlorophyta) strains subjected to diesel fuel oil pollution. Phycologia 37(5): 388–393. DOI: 10.2216/i0031-8884-37-5-388.1.CrossrefGoogle Scholar

  • Urso, M.L. & Clarkson, P.M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189: 41–54. DOI: 10.1016/S0300-483X(03)00151-3.PubMedCrossrefGoogle Scholar

  • USEPA. (2006). USEPA region III risk-based concentration table: technical background information.

  • Valentine, J.S., Wertz, D.L., Lyons, T.J., Liou, L.L., Goto, J.J. et al. (1998). The dark side of dioxygen biochemistry. Curr. Opin. Chem. Biol. 2: 253–262. DOI: 10.1016/S1367-5931(98)80067-7.CrossrefPubMedGoogle Scholar

  • Visviki, I. & Rachlin, J.W. (1994). Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: effects on ultrastructure. Archives Environ. Con. Tox. 26(2): 154–162.Google Scholar

  • Wang, S.Y., Jiao, H. & Faust, M. (1991). Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Physiol. Plantarum 82: 231–236. DOI: 10.1111/j.1399-3054.1991. tb00086.x.CrossrefGoogle Scholar

  • Yalçın, N. & Sevinç, V. (2001). Heavy metal contents of Lake Sapanca. Turk. J. Chem. 25(4): 521–526.Google Scholar

  • Zhou, Z.S., Huang, S.Q., Guo, K., Mehta, S.K., Zhang, P.C. et al. (2007). Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J. Inorg. Biochem. 101: 1–9. DOI: 10.1016/j.jinorgbio.2006.05.011.CrossrefPubMedGoogle Scholar

About the article

Received: 2019-01-17

Accepted: 2019-03-11

Published Online: 2019-09-22

Published in Print: 2019-09-25

Citation Information: Oceanological and Hydrobiological Studies, Volume 48, Issue 3, Pages 270–278, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/ohs-2019-0024.

Export Citation

© 2019 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in