Jump to ContentJump to Main Navigation
Show Summary Details

Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical applications

Diti Desai
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Pharmacy Department, Faculty of Tech. & Eng., The M.S.University of Baroda, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Didem Sen Karaman
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Neeraj Prabhakar
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sina Tadayon
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alain Duchanoy
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana M. Toivola / Sadhana Rajput / Tuomas Näreoja
  • Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jessica M. Rosenholm
  • Corresponding author
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-09 | DOI: https://doi.org/10.2478/mesbi-2014-0001


Mesoporous silica nanoparticles (MSNs) have advanced to the forefront of multifunctional nanoparticulate systems in nanomedicine, owing to this highly fexible materials platform enabling a multitude of design options, often in a modular fashion. Drug delivery ability, detectability via diferent imaging modalities, and stimuliresponsiveness are often combined into one particle system. Very sophisticated and versatile designs along with impressive demonstrations of applicability have been reported to date, but a common ground when it comes to some critical considerations valid for any nanoparticle intended for biomedical purposes is lacking to some degree. In this study, we attempt to take a glance at some of the most crucial aspects of biomedical nanoparticulate design and relate how they apply specifically toMSNs. These considerations include fuorophore labeling and leaching with respect to immobilization to MSNs, the surrounding conditions, carrier biodegradability, and surface coating. Surface modifcation strategies and surface charge tuning are further considered in conjunction to the relative amount of cellular uptake and serum protein adsorption. Cellular internalization routes and biological techniques used to evaluate especially in vitro biobehavior are discussed. Our attempt is hereby to draw attention to some of the most frequently occurring issues to be considered in the design of MSN systems for biomedical applications

Keywords: fuorophore labeling; fuorescence properties; Photostability; surface coating; surface charge; cellular Uptake; cellular internalization routes; serum protein adsorption; PEI cytotoxicity


  • [1] Jessica M Rosenholm et al., “Nanoparticles in Targeted Cancer Therapy: Mesoporous Silica Nanoparticles Entering Preclinical Development Stage,” Nanomedicine 7, no. 1 (January 2012): 111-120, doi:10.2217/nnm.11.166.CrossrefGoogle Scholar

  • [2] Yu-Shen Lin, Katie R. Hurley, and Christy L. Haynes, “Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles,” The Journal of Physical Chemistry Letters 3, no. 3 (February 2, 2012): 364-374, doi:10.1021/jz2013837.CrossrefGoogle Scholar

  • [3] Yanes RE, Tamanoi F. Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv. 2012 Mar;3(3):389-404. doi: 10.4155/tde.12.9.CrossrefGoogle Scholar

  • [4] Zongxi Li et al., “Mesoporous Silica Nanoparticles in Biomedical Applications,” Chemical Society Reviews 41, no. 7 (March 12, 2012): 2590-2605, doi:10.1039/C1CS15246G.CrossrefGoogle Scholar

  • [5] Piaoping Yang, Shili Gai, and Jun Lin, “Functionalized Mesoporous Silica Materials for Controlled Drug Delivery,” Chemical Society Reviews 41, no. 9 (April 9, 2012): 3679-3698, doi:10.1039/C2CS15308D.CrossrefGoogle Scholar

  • [6] Mohammad-Ali Shahbazi, Barbara Herranz, and Helder A. Santos, “Nanostructured Porous Si-Based Nanoparticles for Targeted Drug Delivery,” Biomatter 2, no. 4 (October 1, 2012): 296-312, doi:10.4161/biom.22347.CrossrefGoogle Scholar

  • [7] Wilson X. Mai and Huan Meng, “Mesoporous Silica Nanoparticles: A Multifunctional Nano Therapeutic System,” Integrative Biology 5, no. 1 (December 17, 2012): 19-28, doi:10.1039/C2IB20137B.CrossrefGoogle Scholar

  • [8] Derrick Tarn et al., “Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility,” Accounts of Chemical Research 46, no. 3 (March 19, 2013): 792-801, doi:10.1021/ar3000986.Google Scholar

  • [9] Qianjun He and Jianlin Shi, “MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition,” Advanced Materials (2013): n/a- n/a, doi:10.1002/adma.201303123.CrossrefGoogle Scholar

  • [10] Yu Chen, Hangrong Chen, and Jianlin Shi, “In Vivo Bio- Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles,” Advanced Materials 25, no. 23 (2013): 3144-3176, doi:10.1002/adma.201205292.Google Scholar

  • [11] Christian Argyo et al., “Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery,” Chemistry of Materials 26, no. 1 (January 14, 2014): 435-451, doi:10.1021/cm402592t.CrossrefGoogle Scholar

  • [12] Ayush Verma and Francesco Stellacci, “Efect of Surface Properties on Nanoparticle-Cell Interactions,” Small 6, no. 1 (2010): 12-21, doi:10.1002/smll.200901158.CrossrefGoogle Scholar

  • [13] Andrea Kunzmann et al., “Toxicology of Engineered Nanomaterials: Focus on Biocompatibility, Biodistribution and Biodegradation,” Biochimica et Biophysica Acta (BBA) - General Subjects 1810, no. 3 (March 2011): 361-373, doi:10.1016/j.bbagen.2010.04.007.CrossrefGoogle Scholar

  • [14] Didem Sen Karaman et al., “Shape Engineering vs Organic Modi fcation of Inorganic Nanoparticles as a Tool for Enhancing Cellular Internalization,” Nanoscale Research Letters 7, no. 1 (December 1, 2012): 1-14, doi:10.1186/1556-276X-7-358.CrossrefGoogle Scholar

  • [15] Hong Xu et al., “Preparation of Monodispersed Mesoporous Silica Spheres with Controllable Particle Size Under an Alkaline Condition,” International Journal of Applied Ceramic Technology 9, no. 6 (2012): 1112-1123, doi:10.1111/j.1744-7402.2011.02716.x.CrossrefGoogle Scholar

  • [16] Jessica M. Rosenholm et al., “Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells,” ACS Nano 3, no. 1 (January 27, 2009): 197-206, doi:10.1021/nn800781r.CrossrefGoogle Scholar

  • [17] Jessica M. Rosenholm, Antti Penninkangas, and Mika Lindén, “Amino-Functionalization of Large-Pore Mesoscopically Ordered Silica by a One-Step Hyperbranching Polymerization of a Surface-Grown Polyethyleneimine,” Chemical Communications no. 37 (September 19, 2006): 3909-3911, doi:10.1039/B607886A.CrossrefGoogle Scholar

  • [18] Jessica M. Rosenholm and Mika Lindén, “Wet-Chemical Analysis of Surface Concentration of Accessible Groups on Diferent Amino-Functionalized Mesoporous SBA-15 Silicas,” Chemistry of Materials 19, no. 20 (October 1, 2007): 5023-5034, doi:10.1021/cm071289n.CrossrefGoogle Scholar

  • [19] Jessica M. Rosenholm, Alain Duchanoy, and Mika Lindén, “Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica†,” Chemistry of Materials 20, no. 3 (February 1, 2008): 1126-1133, doi:10.1021/cm7021328.CrossrefGoogle Scholar

  • [20] RainerWittig et al., “Active Targeting of Mesoporous Silica Drug Carriers Enhances -Secretase Inhibitor Efcacy in an in Vivo Model for Breast Cancer,” Nanomedicine (July 30, 2013): 1-17, doi:10.2217/nnm.13.62.CrossrefGoogle Scholar

  • [21] Aurélien Auger et al., “A Comparative Study of Non-Covalent Encapsulation Methods for Organic Dyes into Silica Nanoparticles,” Nanoscale Research Letters 6, no. 1 (April 13, 2011): 328, doi:10.1186/1556-276X-6-328.CrossrefGoogle Scholar

  • [22] Daniel R. Larson et al., “Silica Nanoparticle Architecture Determines Radiative Properties of Encapsulated Fluorophores,” Chemistry of Materials 20, no. 8 (April 1, 2008): 2677-2684, doi:10.1021/cm7026866.Google Scholar

  • [23] Robert Sjöback, Jan Nygren, and Mikael Kubista, “Absorption and Fluorescence Properties of Fluorescein,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51, no. 6 (June 1995): L7-L21, doi:10.1016/0584-8539(95)01421-P.CrossrefGoogle Scholar

  • [24] A. Cook and A. Le, “The Efect of Solvent and pH on the Fluorescence Excitation and Emission Spectra of Solutions Containing Fluorescein.,” J. Phy Chem Lab 10 (2006): 44-49.Google Scholar

  • [25] Jessica M. Rosenholm et al., “On the Nature of the Brønsted Acidic Groups on Native and Functionalized Mesoporous Siliceous SBA-15 as Studied by Benzylamine Adsorption from Solution,” Langmuir 23, no. 8 (April 1, 2007): 4315-4323, doi:10.1021/la062450w.Google Scholar

  • [26] G.E.Ham, Polymeric Amines and Ammonium Salts, in: E.J. Goethals, ed., (Pergamon Press, Oxford, 1980). Google Scholar

  • [27] O. Boussif et al., “A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine,” Proceedings of the National Academy of Sciences 92, no. 16 (August 1, 1995): 7297-7301.Google Scholar

  • [28] Yi-Ping Chen et al., “Surface Charge Efect in Intracellular Localization of Mesoporous Silica Nanoparticles as Probed by Fluorescent Ratiometric pH Imaging,” RSC Advances 2, no. 3 (January 17, 2012): 968-973, doi:10.1039/C1RA00586C.CrossrefGoogle Scholar

  • [29] Yanqing Tian et al., “Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers,” Sensors and Actuators. B, Chemical 147, no. 2 (June 3, 2010): 714-722, doi:10.1016/j.snb.2010.03.029.CrossrefGoogle Scholar

  • [30] W.T. Godbey, Kenneth K. Wu, and Antonios G. Mikos, “Poly(ethylenimine) and Its Role in Gene Delivery,” Journal of Controlled Release 60, no. 2-3 (August 5, 1999): 149-160, doi:10.1016/S0168-3659(99)00090-5.CrossrefGoogle Scholar

  • [31] Jixi Zhang, Diti Desai, and Jessica M. Rosenholm, “Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers,” Advanced Functional Materials (2013): n/a-n/a, doi:10.1002/adfm.201302995.CrossrefGoogle Scholar

  • [32] Werner Stöber, Arthur Fink, and Ernst Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” Journal of Colloid and Interface Science 26, no. 1 (January 1968): 62-69, doi:10.1016/0021-9797(68)90272-5.CrossrefGoogle Scholar

  • [33] Qianjun He et al., “The Three-Stage in Vitro Degradation Behavior of Mesoporous Silica in Simulated Body Fluid,”Microporous and Mesoporous Materials 131, no. 1-3 (June 2010): 314-320, doi:10.1016/j.micromeso.2010.01.009.CrossrefGoogle Scholar

  • [34] Siddharth V. Patwardhan, Graham E. Tilburey, and Carole C. Perry, “Interactions of Amines with Silicon Species in Undersaturated Solutions Leads to Dissolution And/or Precipitation of Silica,” Langmuir 27, no. 24 (December 20, 2011): 15135-15145, doi:10.1021/la204180r.CrossrefGoogle Scholar

  • [35] H. Takakusa et al., “Intramolecular Fluorescence Resonance Energy Transfer System with Coumarin Donor Included in Beta- Cyclodextrin,” Analytical Chemistry 73, no. 5 (March 1, 2001): 939-942.Google Scholar

  • [36] Yasutomo Kawanishi et al., “Design and Synthesis of Intramolecular Resonance-Energy Transfer Probes for Use in Ratiometric Measurements in Aqueous Solution,” Angewandte Chemie International Edition 39, no. 19 (2000): 3438-3440, doi:10.1002/1521-3773(20001002)39:19<3438::AIDANIE3438> 3.0.CO;2-T.CrossrefGoogle Scholar

  • [37] Ralph Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (New York: John Wiley and Sons, 1979).Google Scholar

  • [38] Jefrey C. Brinker and George W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Gulf Professional Publishing, 1990).Google Scholar

  • [39] Blake Simmons et al., “Understanding Amine Catalyzed Silica Polymerization: Diatoms as Bioarchitects” (Sandia National Laboratories, 2007).Google Scholar

  • [40] Rosa Casasús et al., “Toward the Development of Ionically Controlled Nanoscopic Molecular Gates,” Journal of the American Chemical Society 126, no. 28 (July 1, 2004): 8612-8613, doi:10.1021/ja048095i.CrossrefGoogle Scholar

  • [41] Rosa Casasús et al., “Dual Aperture Control on pH- and Anion- Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles,” Journal of the American Chemical Society 130, no. 6 (February 1, 2008): 1903-1917, doi:10.1021/ja0756772.CrossrefGoogle Scholar

  • [42] C. Barbé et al., “Silica Particles: A Novel Drug-Delivery System,” Advanced Materials 16, no. 21 (2004): 1959-1966, doi:10.1002/adma.200400771.CrossrefGoogle Scholar

  • [43] Hong Dinh Duong and Jong Il Rhee, “Exploitation of Thermo- Efect of Rhodamine B Entrapped in Sol-gel Matrix and Silica Gel for Temperature Detection,” Sensors and Actuators B: Chemical 124, no. 1 (June 10, 2007): 18-23, doi:10.1016/j.snb.2006.11.035.Google Scholar

  • [44] Igor Sokolov and Sajo Naik, “Novel Fluorescent Silica Nanoparticles: Towards Ultrabright Silica Nanoparticles,” Small 4, no. 7 (2008): 934-939, doi:10.1002/smll.200700236.CrossrefGoogle Scholar

  • [45] Eun-Bum Cho, Dmytro O. Volkov, and Igor Sokolov, “Ultrabright Fluorescent Mesoporous Silica Nanoparticles,” Small 6, no. 20 (2010): 2314-2319, doi:10.1002/smll.201001337.CrossrefGoogle Scholar

  • [46] Eun-Bum Cho, Dmytro O. Volkov, and Igor Sokolov, “Ultrabright Fluorescent Silica Mesoporous Silica Nanoparticles: Control of Particle Size and Dye Loading,” Advanced Functional Materials 21, no. 16 (2011): 3129-3135, doi:10.1002/adfm.201100311.CrossrefGoogle Scholar

  • [47] Didem Sen Karaman et al., “Rational Evaluation of the Utilization of PEG-PEI Copolymers for the Facilitation of Silica Nanoparticulate Systems in Biomedical Applications,” Journal of Colloid and Interface Science 418 (March 15, 2014): 300-310, doi:10.1016/j.jcis.2013.11.080.CrossrefGoogle Scholar

  • [48] Hervé Hillaireau and Patrick Couvreur, “Nanocarriers’ Entry into the Cell: Relevance to Drug Delivery,” Cellular and Molecular Life Sciences 66, no. 17 (September 1, 2009): 2873-2896, doi:10.1007/s00018-009-0053-z.CrossrefGoogle Scholar

  • [49] Tore-Geir Iversen, Tore Skotland, and Kirsten Sandvig, “Endocytosis and Intracellular Transport of Nanoparticles: Present Knowledge and Need for Future Studies,” Nano Today 6, no. 2 (April 2011): 176-185, doi:10.1016/j.nantod.2011.02.003.CrossrefGoogle Scholar

  • [50] Joanna Rejman et al., “Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis.,” Biochemical Journal 377, no. Pt 1 (January 1, 2004): 159-169, doi:10.1042/BJ20031253.CrossrefGoogle Scholar

  • [51] Tsai-Hua Chung et al., “The Efect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells,” Biomaterials 28, no. 19 (July 2007): 2959-2966, doi:10.1016/j.biomaterials.2007.03.006.CrossrefGoogle Scholar

  • [52] Ilaria Rivolta, Panariti, and Miserocchi, “The Efect of Nanoparticle Uptake on Cellular Behavior: Disrupting or Enabling Functions?,” Nanotechnology, Science and Applications (September 2012): 87, doi:10.2147/NSA.S25515.CrossrefGoogle Scholar

  • [53] Nanjing Hao et al., “The Shape Efect of PEGylated Mesoporous Silica Nanoparticles on Cellular Uptake Pathway in Hela Cells,” Microporous and Mesoporous Materials 162 (November 1, 2012): 14-23, doi:10.1016/j.micromeso.2012.05.040.CrossrefGoogle Scholar

  • [54] Melissa D. Howard et al., “PEGylation of Nanocarrier Drug Delivery Systems: State of the Art,” Journal of Biomedical Nanotechnology 4, no. 2 (June 1, 2008): 133-148, doi:10.1166/jbn.2008.021.CrossrefGoogle Scholar

  • [55] Donald E. Owens III and Nicholas A. Peppas, “Opsonization, Biodistribution, and Pharmacokinetics of Polymeric Nanoparticles,” International Journal of Pharmaceutics 307, no. 1 (January 3, 2006): 93-102, doi:10.1016/j.ijpharm.2005.10.010.CrossrefGoogle Scholar

  • [56] Zohreh Amoozgar and Yoon Yeo, “Recent Advances in Stealth Coating of Nanoparticle Drug Delivery Systems,”Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 4, no. 2 (2012): 219-233, doi:10.1002/wnan.1157. [57] Pablo del Pino et al., “Protein Corona Formation around Nanoparticles - from the Past to the Future,”Materials Horizons (November 11, 2013), doi:10.1039/C3MH00106G.Google Scholar

  • [58] M. Laird Forrest, James T. Koerber, and Daniel W. Pack, “A Degradable Polyethylenimine Derivative with Low Toxicity for Highly Efcient Gene Delivery,” Bioconjugate Chemistry 14, no. 5 (September 1, 2003): 934-940, doi:10.1021/bc034014g.CrossrefGoogle Scholar

  • [59] He Shen et al., “Synthesis, Protein Delivery, and in Vitro and in Vivo Toxicity of a Biodegradable Poly(aminoester),” Toxicology Research 2, no. 6 (2013): 379, doi:10.1039/c3tx50074h.CrossrefGoogle Scholar

  • [60] Veronika Mamaeva et al., “Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer,”Molecular Therapy 19, no. 8 (August 2011): 1538-1546, doi:10.1038/mt.2011.105.Google Scholar

  • [61] Hong Jin Kim, Joong Ho Moon, and Joon Won Park, “A Hyperbranched Poly(ethyleneimine) Grown on Surfaces,” Journal of Colloid and Interface Science 227, no. 1 (July 1, 2000): 247-249, doi:10.1006/jcis.2000.6861.CrossrefGoogle Scholar

  • [62] Tian Xia et al., “Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs,” ACS Nano 3, no. 10 (October 27, 2009): 3273-3286, doi:10.1021/nn900918w.Google Scholar

  • [63] Qianjun He et al., “Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles,” Small 5, no. 23 (2009): 2722-2729, doi:10.1002/smll.200900923. CrossrefGoogle Scholar

About the article

Published Online: 2014-04-09

Published in Print: 2014-01-01

Citation Information: Open Material Sciences, Volume 1, Issue 1, ISSN (Online) 2544-7300, DOI: https://doi.org/10.2478/mesbi-2014-0001.

Export Citation

©2014 Diti Desai et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Diti Desai, Malin Åkerfelt, Neeraj Prabhakar, Mervi Toriseva, Tuomas Näreoja, Jixi Zhang, Matthias Nees, and Jessica Rosenholm
Pharmaceutics, 2018, Volume 10, Number 4, Page 237
Kumbam Lingeshwar Reddy, Neeraj Prabhakar, Jessica Rosenholm, and Venkata Krishnan
Micromachines, 2018, Volume 9, Number 8, Page 400
Anna Slita, Anna Egorova, Eudald Casals, Anton Kiselev, and Jessica M. Rosenholm
Asian Journal of Pharmaceutical Sciences, 2018
Didem Şen Karaman, Mirkka P. Sarparanta, Jessica M. Rosenholm, and Anu J. Airaksinen
Advanced Materials, 2018, Page 1703651
Henrika Wickström, Ellen Hilgert, Johan Nyman, Diti Desai, Didem Şen Karaman, Thomas de Beer, Niklas Sandler, and Jessica Rosenholm
Molecules, 2017, Volume 22, Number 12, Page 2020
Mahentha Krishnamoorthy, Danyang Li, Amir S. Sharili, Tina Gulin-Sarfraz, Jessica M. Rosenholm, and Julien E. Gautrot
Biomacromolecules, 2017
Maren Preis and Jessica M Rosenholm
Therapeutic Delivery, 2017, Volume 8, Number 9, Page 721
Diti Desai, Jixi Zhang, Jouko Sandholm, Jaakko Lehtimäki, Tove Grönroos, Johanna Tuomela, and Jessica M. Rosenholm
Molecular Pharmaceutics, 2017
Ilkka Paatero, Eudald Casals, Rasmus Niemi, Ezgi Özliseli, Jessica M. Rosenholm, and Cecilia Sahlgren
Scientific Reports, 2017, Volume 7, Number 1
Mingxian Huang, Lu Liu, Shige Wang, Haiyan Zhu, Dahui Wu, Zhihao Yu, and Shilin Zhou
Langmuir, 2017, Volume 33, Number 2, Page 519
Habib Baghirov, Didem Karaman, Tapani Viitala, Alain Duchanoy, Yan-Ru Lou, Veronika Mamaeva, Evgeny Pryazhnikov, Leonard Khiroug, Catharina de Lange Davies, Cecilia Sahlgren, Jessica M. Rosenholm, and Valentin Ceña
PLOS ONE, 2016, Volume 11, Number 8, Page e0160705
Tuomas Näreoja, Takahiro Deguchi, Simon Christ, Riikka Peltomaa, Neeraj Prabhakar, Elnaz Fazeli, Niina Perälä, Jessica M. Rosenholm, Riikka Arppe, Tero Soukka, and Michael Schäferling
Analytical Chemistry, 2017, Volume 89, Number 3, Page 1501
Digambara Patra, Didem Şen Karaman, Diti Desai, Elsy El Khoury, and Jessica M. Rosenholm
Materials Research Bulletin, 2016, Volume 84, Page 267
Joan Comenge, Oihane Fragueiro, Jack Sharkey, Arthur Taylor, Marie Held, Neal C. Burton, Brian Kevin Park, Bettina Wilm, Patricia Murray, Mathias Brust, and Raphaël Lévy
ACS Nano, 2016, Volume 10, Number 7, Page 7106
Eva von Haartman, Desiré Lindberg, Neeraj Prabhakar, and Jessica M. Rosenholm
European Journal of Pharmaceutical Sciences, 2016, Volume 95, Page 17
K. L. Reddy, M. Rai, N. Prabhakar, R. Arppe, S. B. Rai, S. K. Singh, J. M. Rosenholm, and V. Krishnan
RSC Adv., 2016, Volume 6, Number 59, Page 53698
D. Şen Karaman, S. Sarwar, D. Desai, E. M. Björk, M. Odén, P. Chakrabarti, J. M. Rosenholm, and S. Chakraborti
J. Mater. Chem. B, 2016, Volume 4, Number 19, Page 3292
Didem Şen Karaman, Diti Desai, Jixi Zhang, Sina Tadayon, Gözde Unal, Jarmo Teuho, Jawad Sarfraz, Jan-Henrik Smått, Hongchen Gu, Tuomas Näreoja, and Jessica M. Rosenholm
J. Mater. Chem. B, 2016, Volume 4, Number 9, Page 1720
Erik Niemelä, Diti Desai, Yves Nkizinkiko, John E. Eriksson, and Jessica M. Rosenholm
European Journal of Pharmaceutics and Biopharmaceutics, 2015, Volume 96, Page 11
Tina Gulin-Sarfraz, Jixi Zhang, Diti Desai, Jarmo Teuho, Jawad Sarfraz, Hua Jiang, Chunfu Zhang, Cecilia Sahlgren, Mika Lindén, Hongchen Gu, and Jessica M. Rosenholm
Biomater. Sci., 2014, Volume 2, Number 12, Page 1750

Comments (0)

Please log in or register to comment.
Log in