Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

How do different factors impact agricultural water management?

Mohammad Valipour
  • Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-12 | DOI: https://doi.org/10.1515/opag-2016-0014


This study compares the impacts of different factors on agricultural water management in the Americas in the last 50 years. The number of 18 indexes (as the main and sub-main indexes) was selected to assess agricul- tural water management based on their importance and other indexes were not studied due to lack of adequate data. Changes in the main indexes in 2011 showed that concurrent values across regions varied according to the nature of the indexes and conditions of the countries. In the next step, the value of area equipped for irrigation/ cultivated area (10th index) was estimated using the other main indexes. As a result, a list of strengths and weakness for agricultural water management in the Americas in the last 50 years was created. However, The only way to meet sustainable development is to learn from past expe- riences for the improvement of agricultural water man- agement. The desirability of condition for agricultural water management is difficult for Central America (except Belize, which presents a fair status) and it is less than 40% for Greater Antilles (with the exception of Dominican Republic 55%). Guyana is the best country for agricultural water management because its desirability of condition (72%) is more than all the countries in Americas.

Keywords: Agriculture; Climate change; Irrigation management; Optimum decision; Sustainable agriculture


  • [1] Ale S., Bowling L.C., Brouder S.M., Frankenberger J.R., Youssef M.A. (2009). Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States. Agricultural Water Management. 96: 653-665 CrossrefGoogle Scholar

  • [2] Ale S., Bowling L.C., Owens P.R., Brouder S.M., Frankenberger J.R. (2010). Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management. Agricultural Water Management. 107: 23-33 Google Scholar

  • [3] Ayars J.E., Christen E.W., Hornbuckle J.W. (2006). Controlled drainage for improved water management in arid regions irrigated agriculture. Agricultural Water Management. 86: 128-139 CrossrefGoogle Scholar

  • [4] Bolliger A., Magid J., Amado J.C.T, Neto F.S., de Fatima dos Santos Ribeiro M., Calegari A., Ralisch R., de Neergaard A. (2006). Taking Stock of the Brazilian “Zero‐Till Revolution”: A Review of Landmark Research and Farmers’ Practice. Advances in Agronomy. 91: 47-110 CrossrefGoogle Scholar

  • [5] Calder I.R., Hall R.L., Bastable H.G., Gunston H.M., Shela O., Chirwa A., Kafundu R. (1995). The impact of land use change on water resources in sub-Saharan Africa: a modelling study of Lake Malawi. Journal of Hydrology. 170(1): 123-135 CrossrefGoogle Scholar

  • [6] De Salvo M, Raffaelli R & Moser R. (2013). The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis. Agricultural Systems. 118: 23-32 CrossrefGoogle Scholar

  • [7] du Plessis H.M. (1985). Evapotranspiration of citrus as affected by soil water deficit and soil salinity. Irrigation Science. 6: 51-61 CrossrefGoogle Scholar

  • [8] Evans A.E.V., Giordano M., Clayton T. (Eds.). (2012). Investing in agricultural water management to benefit smallholder farmers in Ethiopia. AgWater Solutions Project country synthesis report Colombo, Sri Lanka: International Water Management Institute (IWMI). 35p. (IWMI Working Paper 152). http://dx.doi. org/10.5337/2012.215 CrossrefGoogle Scholar

  • [9] Falkenmark M. (1989). The massive water scarcity threatening Europe-why isn’t it being addressed. Ambio. 18: 112-118 Google Scholar

  • [10] FAO. (2012). THE STATE OF FOOD AND AGRICULTURE. ISSN 0081-4539 Google Scholar

  • [11] FAO. (2013). AQUASTAT database. http://fao.org Google Scholar

  • [12] Foley J. A., DeFries R., Asner G. P., Barford C., Bonan G., Carpenter S. R., Chapin S., Coe M.T., Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N., Snyder P. K. (2005). Global consequences of land use. Science, 309(5734): 570-574 Google Scholar

  • [13] Franks T., Garces-Restrepo C., Putuhena F. (2008). Developing capacity for agricultural water management: current practice and future directions. Irrigatoin and Drainage. 57: 255-267 Google Scholar

  • [14] Gommes R., Petrassi F. (1994). Rainfall Variability and Drought in Sub-Saharan Europe Since 1960. Agro-meteorology Series Working Paper 9, Food and Agriculture Organization, Rome, Italy Google Scholar

  • [15] Hussain I. (2007). Pro-poor intervention strategies in irrigated agriculture in Asia: issues, lessons, options and guidelines. Irrigation and Drainage. 56: 119-126 CrossrefGoogle Scholar

  • [16] Hussain I., Turral H., Molden D., Ahmad M.D. (2007). Measuring and enhancing the value of agricultural water in irrigated river basins. Irrigation Science. 25: 263-282 CrossrefGoogle Scholar

  • [17] Killgore M. (2009). Recent Developments in Water Policy in the The world. World Environmental and Water Resources Congress 1-8 Google Scholar

  • [18] Kirpich P., Haman D., Styles S. (1999). Problems of Irrigation in Developing Regions. Journal of Irrigation and Drainage Engineering. 125: 1-6 Google Scholar

  • [19] Knox J.W., Kay M.G., Weatherhead E.K. (2012). Water regulation, crop production, and agricultural water management — Understanding farmer perspectives on irrigation efficiency. Agricultural Water Management. 108: 3-8 CrossrefGoogle Scholar

  • [20] Hendrickson M.K., James Jr H.S., Heffernan W.D. (2008). Does The World Need U.S. Farmers Even If The world Don’t? Journal of Agricultural & Environmental Ethics. 21: 311-328 CrossrefGoogle Scholar

  • [21] Lal R. (2001). Potential of Desertification Control to Sequester Carbon and Mitigate the Greenhouse Effect. Climate Changes. 51: 35-72 Google Scholar

  • [22] McCready M., Dukes M. (2009). Evaluation of Irrigation Scheduling Efficiency and Adequacy by Various Control Technologies Compared to Theoretical Irrigation Requirement. World Environmental and Water Resources Congress 1-19 Google Scholar

  • [23] Michaels P.J. (1990). The greenhouse effect and global change: review and reappraisal. International Journal of Environmental Studies. 36: 55-71 CrossrefGoogle Scholar

  • [24] Mishra A.K., Singh V.P. (2010). A review of drought concepts. Journal of Hydrology. 391: 202-216 CrossrefGoogle Scholar

  • [25] Montenegro S.G., Montenegro A., Ragab R. (2010). Improving agricultural water management in the semi-arid region of Brazil: experimental and modelling study. Irrigation Science. 28: 301-316 CrossrefGoogle Scholar

  • [26] Muzik I. (2002). A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. Journal of Hydrology. 267: 65-73 CrossrefGoogle Scholar

  • [27] Namara R., Munir E., Hanjra A., Castillo G.E., Ravnborg H.M., Smith L., Van Koppen B. (2010). Agricultural water management and poverty linkages. Agricultural Water Management. 97: 520-527 CrossrefGoogle Scholar

  • [28] Naiken L., Schulte W. (1976). Population and labour force projections for agricultural planning. Food Policy. 1: 192–202 CrossrefGoogle Scholar

  • [29] Neumann K., Stehfest E., Verburg P.H., Siebert S., Muller C., Veldkamp T. (2011). Exploring global irrigation patterns: A multilevel modelling approach. Agricultural Systems. 104: 703-713 CrossrefGoogle Scholar

  • [30] Plusquellec H. (2002). Is the daunting challenge of irrigation achievable?. Irrigation and Drainage. 51: 185–198 CrossrefGoogle Scholar

  • [31] Rahimi S., Gholami Sefidkouhi M.A., Raeini-Sarjaz M., Valipour M. (2015). Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Archives of Agronomy and Soil Science. 61 (5): 695-709 Google Scholar

  • [32] Rezaei M., Valipour M., Valipour M. (2016). Modelling evapotranspiration to increase the accuracy of the estimations based on the climatic parameters. Water Conservation Science and Engineering. 1 (3): 197-207 Google Scholar

  • [33] Simenstad C.A., Jay D.A., Sherwood C.R. (1992). Impacts of Watershed Management on Land-Margin Ecosystems: The Columbia River Estuary. Watershed Management 266-306. ISBN 978-0-387-94232-2 Google Scholar

  • [34] Steiner R., Keller A. (1992). Irrigation Land Management Model. Journal of Irrigation and Drainage Engineering. 118: 928–942 Google Scholar

  • [35] Sukhwal B.L. (1991). Native The world water rights in the water scarce Western United States, its causes, consequences and probable solutions. GeoJournal. 24: 347-354 Google Scholar

  • [36] Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. (2002). Agricultural sustainability and intensive production practices. Nature. 418(6898): 671-677 Google Scholar

  • [37] Turral H., Svendsen M., Faures J.M. (2010). Investing in irrigation: Reviewing the past and looking to the future. Agricultural Water Management. 97: 551-560 CrossrefGoogle Scholar

  • [38] Valero C.S., Madramootoo C.A., Stampfli N. (2007). Water table management impacts on phosphorus loads in tile drainage. Agricultural Water Management. 89: 71–80 CrossrefGoogle Scholar

  • [39] Valipour M. (2016a). How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations? Agriculture. 6(4): 53 CrossrefGoogle Scholar

  • [40] Valipour M. (2016b). Variations of land use and irrigation for next decades under different scenarios. Irriga. In Press Google Scholar

  • [41] Valipour M., Singh V.P., (2016). Global Experiences on Wastewater Irrigation: Challenges and Prospects. Balanced Urban Development: Options and Strategies for Liveable Cities. Basant Maheshwari, Vijay P. Singh, Bhadranie Thoradeniya, (Eds.). AG: Springer. Switzerland. 289-327 Google Scholar

  • [42] Valipour M., Gholami Sefidkouhi M.A., Raeini-Sarjaz M., (2017a). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management. 180 (Part A): 50-60 CrossrefGoogle Scholar

  • [43] Valipour M., Gholami Sefidkouhi M.A., Khoshravesh M., (2017b). Estimation and trend evaluation of reference evapotranspiration in a humid region. Italian Journal of Agrometeorology. In Press Google Scholar

  • [44] Valipour M., Gholami Sefidkouhi M.A., (2017). Temporal analysis of reference evapotranspiration to detect variation factors. International Journal of Global Warming. In Press Google Scholar

  • [45] Valipour M. (2015a). Future of agricultural water management in Africa. Archives of Agronomy and Soil Science. 61 (7): 907-927 Google Scholar

  • [46] Valipour M. (2015b). Calibration of mass transfer-based models to predict reference crop evapotranspiration. Applied Water Science. In Press. http://dx.doi.org/10.1007/s13201-015- 0274-2 CrossrefGoogle Scholar

  • [47] Valipour M. (2014c). Analysis of potential evapotranspiration using limited weather data. Applied Water Science. In Press. http://dx.doi.org/10.1007/s13201-014-0234-2 CrossrefGoogle Scholar

  • [48] Valipour M. (2015d). Evaluation of radiation methods to study potential evapotranspiration of 31 provinces. Meteorology and Atmospheric Physics. 127 (3): 289-303 CrossrefGoogle Scholar

  • [49] Valipour M. (2015e). Temperature analysis of reference evapotranspiration models. Meteorological Applications. 22 (3): 385-394 CrossrefGoogle Scholar

  • [50] Valipour M. (2015f). Investigation of Valiantzas’ evapotranspiration equation in Iran. Theoretical and Applied Climatology. 121 (1-2): 267-278 CrossrefGoogle Scholar

  • [51] Valipour M. (2015g). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications. 22 (3): 592-598 CrossrefGoogle Scholar

  • [52] Valipour M. (2015c). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5 (4): 367-395 Google Scholar

  • [53] Valipour M., Montazar A.A., (2012). An Evaluation of SWDC and WinSRFR Models to Optimize of Infiltration Parameters in Furrow Irrigation. American Journal of Scientific Research 69: 128-142 Google Scholar

  • [54] Valipour M. (2013a). INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION. ARPN Journal of Agricultural and Biological Science. 8 (1): 35-43 Google Scholar

  • [55] Valipour M. (2013b). Necessity of Irrigated and Rainfed Agriculture in the World. Irrigation & Drainage Systems Engineering. S9, e001. http://omicsgroup.org/journals/ necessity-of-irrigated-and-rainfed-agriculture-in-theworld- 2168-9768.S9-e001.php?aid=12800 Google Scholar

  • [56] Valipour M. (2013c). Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas. Irrigation & Drainage Systems Engineering. 2 (1): e114. http://dx.doi.org/10.4172/2168- 9768.1000e114 CrossrefGoogle Scholar

  • [57] Valipour M. (2013d). USE OF SURFACE WATER SUPPLY INDEX TO ASSESSING OF WATER RESOURCES MANAGEMENT IN COLORADO AND OREGON, US. Advances in Agriculture, Sciences and Engineering Research. 3 (2): 631-640. http:// vali-pour.webs.com/13.pdf Google Scholar

  • [58] Valipour M. (2012a). HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM ABAD GHARB, IRAN. ARPN Journal of Agricultural and Biological Science. 7 (12): 968-976 Google Scholar

  • [59] Valipour M. (2012b). Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 1 (5), 1-11. http://dx.doi.org/10.9790/2380-0150111 CrossrefGoogle Scholar

  • [60] Valipour M. (2012c). A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). 4 (1): 7-12. http://dx.doi.org/10.9790/1684-0410712 CrossrefGoogle Scholar

  • [61] Valipour M. (2012d). Number of Required Observation Data for Rainfall Forecasting According to the Climate Conditions. American Journal of Scientific Research 74: 79-86 Google Scholar

  • [62] Valipour M. (2014a). Application of new mass transfer formulae for computation of evapotranspiration. Journal of Applied Water Engineering and Research. 2 (1): 33-46 Google Scholar

  • [63] Valipour M. (2014b). Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods. Water Resources Management. 28 (12): 4237-4255 Google Scholar

  • [64] Viala E. (2008). Water for food, water for life a comprehensive assessment of water management in agriculture. Irrigation and Drainage Systems, 22(1): 127-129 Google Scholar

  • [65] WBG. (2013). WBG database. http://www.worldbank.org/ Google Scholar

  • [66] Wu I.P., Barragan J., Bralts V. (2013). Irrigation Systems: Water Conservation. Encyclopedia of Environmental Management , Taylor & Francis,.http://dx.doi.org/10.1081/E-EEM-120010068 CrossrefGoogle Scholar

  • [67] Valipour M. (2015h). Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Archives of Agronomy and Soil Science, 61 (5): 679-694 Google Scholar

  • [68] Valipour M. (2015i). Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Archives of Agronomy and Soil Science, 61 (2): 239-255 Google Scholar

  • [69] Yannopoulos S.I., Lyberatos G., Theodossiou N., Li W., Valipour M., Tamburrino A., Angelakis A.N., (2015). Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide. Water, 7 (9): 5031-5060 Google Scholar

About the article

Received: 2016-09-25

Accepted: 2016-10-31

Published Online: 2016-12-12

Citation Information: Open Agriculture, Volume 1, Issue 1, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2016-0014.

Export Citation

©2016 Mohammad Valipour. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jorge Miguel Mendes, Filipe Neves dos Santos, Nuno André Ferraz, Pedro Mogadouro do Couto, and Raul Morais dos Santos
Journal of Intelligent & Robotic Systems, 2018
Fredu Nega Tegebu and Edris Hussein Seid
African Development Review, 2017, Volume 29, Number 4, Page 601
Nuraina Anisa Dahlan, Anand Kumar Veeramachineni, Steven James Langford, and Janarthanan Pushpamalar
Carbohydrate Polymers, 2017, Volume 173, Page 619
Victoria Bernáldez, Juan J. Córdoba, Naresh Magan, Belén Peromingo, and Alicia Rodríguez
LWT - Food Science and Technology, 2017, Volume 83, Page 283
Jian Jiao, Yadong Wang, Liliang Han, and Derong Su
Applied Sciences, 2017, Volume 7, Number 4, Page 421
Nitul Kakati, Jatindranath Maiti, Kang Soo Lee, Balasubramanian Viswanathan, and Young Soo Yoon
Electrochimica Acta, 2017, Volume 240, Page 175
Katalin Szendi, Zoltán Gyöngyi, Zsuzsanna Kontár, Gellért Gerencsér, Károly Berényi, Adrienn Hanzel, Jenő Fekete, András Kovács, and Csaba Varga
Exposure and Health, 2017

Comments (0)

Please log in or register to comment.
Log in