Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Recognition of Phytophthora infestans in potato (Solanum tuberosum L.): Scr74 gene as an example

Mulusew Kassa Bitew / Emmanouil Domazakis
  • Wageningen UR Plant Breeding, Wageningen University and Research, Centre. P.O. Box: 8 386, 6700 AJ, Wageningen, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/opag-2016-0021


Phytophthora infestans is the causal agent of late blight, the most devastating disease of potato worldwide. The P. infestans genome encodes potentially polymorphic genes that evolve continually to evade the recognition of plant R genes, though it has hundreds of predicted and conserved effector proteins recognised by the plant. The gene Scr74 encodes a predicted 74-amino acid secreted cysteine-rich protein belonging to a highly polymorphic gene family within P. infestans. This study screened the recognition of Scr74 genes in wild potato genotypes from August 2013 to January 2014 in the Plant Breeding Laboratory of Wageningen University, the Netherlands. To identify the recognition of the Scr74 gene, we grew potato genotypes in the green house for PVX assays, detached leaf assays and molecular work. Twenty-seven good-quality sequences of the Scr74 gene variant with a length of 74 amino acids were found and more frequent amino acid variation was detected on the mature protein. Seventeen Scr74 constructs were identified as diversified and two effectors were strongly recognised by wild S. verrucosum genotypes via effectoromics from the PVX assay. A strong plant cell death hypersensitive response (HR) was recorded on wild S. verrucosum and S. tuberosum genotypes from the detached leaf assay. This recognition seems to be a useful indicator for the presence of a resistance gene (s) to the polymorphic effectors of P. infestans (as it has seen on Scr74 gene) in the wild potato genotypes.

Keywords: Phytophthora infestans; polymorphic gene; Phytotoxin-like protein; Scr74 gene; apoplastic effectors; effectoromics


  • Bent A.F., Mackey D. (2008). Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annual Review of Phytopathology, 45, 399-436Web of ScienceCrossrefGoogle Scholar

  • Bertani, G. (1951). Studies on Lysogenesis: The Mode of Phage Liberation by Lysogenic Escherichia coli, J. Bacteriol, 62,293-300.Google Scholar

  • Bos J.I.B., Armstrong M., Whisson S.C., Torto T.A., Ochwo M., Birch P.R.J., Kamoun S. (2003). Intraspecific comparative genomics to identify avirulence genes from Phytophthora. New Phytologist, 159(1), 63-72.Google Scholar

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 783-791CrossrefGoogle Scholar

  • Giraldo M.C., Valent B. (2013). Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol., 11(11), 800-814CrossrefWeb of ScienceGoogle Scholar

  • Göhre V., Robatzek S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathollogy, 46, 189-215CrossrefGoogle Scholar

  • Haas B.J., Kamoun S., Zody M.C., Jiang R.H., Handsaker R.E., Cano L.M., Grabherr M., Kodira C.D., Raffaele S., Torto-Alalibo T., Bozkurt T.O., Ah-Fong A.M., Alvarado L., Anderson V.L.,Armstrong M.R., Avrova A., Baxter L., Beynon J., Boevink P.C., Bollmann S.R., Bos J.I., Bulone V., Cai G., Cakir C., Carrington J.C., Chawner M., Conti L., Costanzo S., Ewan R., Fahlgren N., Fischbach M.A., Fugelstad J., Gilroy E.M., Gnerre S., Green P.J., Grenville-Briggs L.J., Griffith J., Grünwald N.J., Horn K., Horner N.R., Hu C.H., Huitema E., Jeong D.H., Jones A.M., Jones J.D., Jones R.W., Karlsson E.K., Kunjeti S.G., Lamour K., Liu Z., Ma L., Maclean D., Chibucos M.C., McDonald H., McWalters J., Meijer H.J., Morgan W., Morris P.F., Munro C.A., O’Neill K., Ospina-Giraldo M., Pinzón A., Pritchard L., Ramsahoye B., Ren Q., Restrepo S., Roy S., Sadanandom A., Savidor A., Schornack S., Schwartz D.C., Schumann U.D., Schwessinger B., Seyer L., Sharpe T., Silvar C., Song J., Studholme D.J., Sykes S., Thines M., van de Vondervoort P.J., Phuntumart V., Wawra S., Weide R., Win J., Young C., Zhou S., Fry W., Meyers B.C., van West P., Ristaino J., Govers F., Birch P.R., Whisson S.C., Judelson H.S., Nusbaum C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461(7262), 393-398Web of ScienceGoogle Scholar

  • Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTGoogle Scholar

  • Haverkort A.J., Struik P.C., Visser R.G.F., Jacobsen E. (2009). Applied biotechnology to combat late blight in potato caused by phytophthora infestans. Potato Research, 52(3), 249-264Web of ScienceCrossrefGoogle Scholar

  • Houterman P., Cornelissen B., Rep M. (2008). Suppression of Plant Resistance Gene-Based Immunity by a Fungal Effector. PLoS Pathog, 4(5), e1000061Web of ScienceGoogle Scholar

  • International Potato Center (2010). Facts and figures about potato. Retrieved on September 18, 2013. From http://cipotato.org/ potato/factsGoogle Scholar

  • Jones J.D.G., Dangl J.L. (2006). The plant immune system. 444(7117), 323-329Web of ScienceGoogle Scholar

  • Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol., 44, 41-60.Web of ScienceCrossrefGoogle Scholar

  • Liu Z., Bos J.I., Armstrong M., Whisson S. C., da Cunha L., Torto- Alalibo T., Birch P.R., Win J., Avrova A.O., Wright F., Birch P.R., Kamoun S. (2005). Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Molecular biology and Evolution, 22(3), 659-672Google Scholar

  • Margulis L., Chapman M. (2009). Kingdoms and Domains. an illustrated guide to the phyla of life on earth. W.H. Freeman and Co., New York, N.Y.Google Scholar

  • Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497CrossrefGoogle Scholar

  • Nicastro G., Orsomando G., Ferrari E., Manconi L., Desario F., Amici A., Naso A., Carpaneto A., Pertinhez T.A., Ruggieri S., Spisni A. (2009). Solution structure of the phytotoxic protein PcF: the first characterized member of the Phytophthora PcF toxin family. Protein Science, 18(8), 1786-1791CrossrefWeb of ScienceGoogle Scholar

  • Niks E.R., Parlevliet E.J., Lindhout P., Bai Y. (2011). “Breeding Crops with resistance to diseases and Pests. The Nethrlands, Wageningen University Laboratory of Plant BreedingGoogle Scholar

  • Orsomando G., Lorenzi M., Raffaelli N., Dalla Rizza M., Mezzetti B., Ruggieri S. (2001). Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline- containing factor secreted by the strawberry pathogen Phytophthora cactorum. Journal of Biological Chemistry, 276(24), 21578-21584Google Scholar

  • Petra M., Houterman B.J.C., Martijn Rep. (2008). Suppression of Plant Resistance Gene-Based Immunity by a Fungal Effector. Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The NetherlandsGoogle Scholar

  • Saitou N., Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425Google Scholar

  • SolRgene database. (2007). Solanum- P. infestans in detached leaf assay. Retrieved, September 25, 2013, from http://www. plantbreeding.wur.nl/SolRgenes/resistanceSummary/ detachedLeafAssayGoogle Scholar

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739Google Scholar

  • Torto T.A., Li S., Styer A., Huitema E., Testa A., Gow N.A., van West P. Kamoun S. (2003). EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome research, 13(7), 1675-1685CrossrefGoogle Scholar

  • Underwood W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. [Mini Review]. Frontiers in Plant Science, 3. doi: 10.3389/fpls.2012.00085CrossrefGoogle Scholar

  • Vleeshouwers V.G., Driesprong J.D., Kamphuis L.G., Torto-Alalibo T., Van’t Slot K.A., Govers F., Visser R.G., Jacobsen E., Kamoun S. (2006). Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular plant pathology, 7(6), 499-510CrossrefGoogle Scholar

  • Vleeshouwers V.G., Raffaele S., Vossen J.H., Champouret N., Oliva R., Segretin M.E., Rietman H., Cano L.M., Lokossou A., Kessel G., Pel M.A., Kamoun S. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annual review of phytopathology, 49, 507-531CrossrefWeb of ScienceGoogle Scholar

  • Yang Z., Wong W.S.W., Nielsen R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution, 22(4), 1107-1118CrossrefGoogle Scholar

  • Yi M., Valent B. (2013). Communication between filamentous pathogens and plants at the biotrophic interface. Annual Review of Phytopathology, Vol. 51, 587-611 Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-11-07

Accepted: 2016-12-10

Published Online: 2016-12-30

Citation Information: Open Agriculture, Volume 1, Issue 1, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2016-0021.

Export Citation

©2016 Mulusew Kassa Bitew, Emmanouil Domazakis. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in