Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Agriculture for Space: People and Places Paving the Way

Raymond M. Wheeler
Published Online: 2017-02-10 | DOI: https://doi.org/10.1515/opag-2017-0002


Agricultural systems for space have been discussed since the works of Tsiolkovsky in the early 20th century. Central to the concept is the use of photosynthetic organisms and light to generate oxygen and food. Research in the area started in 1950s and 60s through the works of Jack Myers and others, who studied algae for O2 production and CO2 removal for the US Air Force and the National Aeronautics and Space Administration (NASA). Studies on algal production and controlled environment agriculture were also carried out by Russian researchers in Krasnoyarsk, Siberia beginning in 1960s including tests with human crews whose air, water, and much of their food were provided by wheat and other crops. NASA initiated its Controlled Ecological Life Support Systems (CELSS) Program ca. 1980 with testing focused on controlled environment production of wheat, soybean, potato, lettuce, and sweetpotato. Findings from these studies were then used to conduct tests in a 20 m2, atmospherically closed chamber located at Kennedy Space Center. Related tests with humans and crops were conducted at NASA’s Johnson Space Center in the 1990s. About this same time, Japanese researchers developed a Controlled Ecological Experiment Facility (CEEF) in Aomori Prefecture to conduct closed system studies with plants, humans, animals, and waste recycling systems. CEEF had 150 m2 of plant growth area, which provided a near-complete diet along with air and water regeneration for two humans and two goats. The European Space Agency MELiSSA Project began in the late 1980s and pursued ecological approaches for providing gas, water and materials recycling for space life support, and later expanded to include plant testing. A Canadian research team at the University of Guelph developed a research facility ca. 1994 for space crop research. The Canadian team eventually developed sophisticated canopy-scale hypobaric plant production chambers ca. 2000 for testing crops for space, and have since expanded their testing for a wide range of controlled environment agriculture topics. Most recently, a group at Beihang University in Beijing designed, built and tested a closed life support facility (Lunar Palace 1), which included a 69-m2 agricultural module for air, water, and food production for three humans. As a result of these studies for space agriculture, novel technologies and findings have been produced; this includes the first use of light emitting diodes for growing crops, one of the first demonstrations of vertical agriculture, use of hydroponic approaches for subterranean crops like potato and sweetpotato, crop yields that surpassed reported record field yields, the ability to quantify volatile organic compound production (e.g., ethylene) from whole crop stands, innovative approaches for controlling water delivery, approaches for processing and recycling wastes back to crop production systems, and more. The theme of agriculture for space has contributed to, and benefited from terrestrial, controlled environment agriculture and will continue to do so into the future.

Keywords: Bioregenerative; Controlled Environment Agriculture; Vertical Farming; Advanced Life-Support; photosynthesis


  • Alling, A., M. Van Thillo, W. Dempster, M. Nelson, S. Silverstone, and J. Allen. 2005. Lessons learned from Biosphere 2 and laboratory biosphere closed systems experiment for the Mars on Earth project. Biological Sci. in Space, 19(4), 250-260Google Scholar

  • Andre, M., F. Cote, A. Gerbaud, D. Massimino, J. Massimino, and C. Richaud. 1989. Effect of CO2 and O2 on development and fructification of wheat in closed systems. Adv. Space Res., 9(8), 17-28Google Scholar

  • Andre, M. and D. Massimino. 1992. Growth of plants at reduced pressures: Experiments in wheat-technological advantages and constraints. Adv. Space Res., 12(5), 97-106Google Scholar

  • Avercheva, O., Yu,A. Berkovich, S. Smolyanina, E. Bassarskaya, S. Pogosyan, V. Ptushenko, A. Erokhin, T. Zhigalova. 2014. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue-red LED assembly designed for space agriculture. Adv. Space Res., 53, 1574-1581Google Scholar

  • Ashida, A and K. Nitta. 1995. Construction of CEEF (Closed Ecology experiment Facility) is just started. SAE Tech., Paper 951584Google Scholar

  • Averner, M., M. Karel, and R. Radmer. 1984. Problems associated with using algae in bioregenerative life support systems. NASA Contractor Report 166615, Ames Research Center, Moffett Field, CAGoogle Scholar

  • Bamsey, M. T. Graham, M. Stasiak, A. Berinstain, A. Scott, and T. Rondeau Vuk, and M. Dixon. 2009. Canadian advanced life support capacities and future directions. Advances in Space Research, 44, 151-161Google Scholar

  • Bamsey, M., Graham, T., Thompson, C., Bertinstain, A., Scott, A., M. Dixon, University of Guelph, Canada. 2012. Ion-Specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors, 12(10), 13349-13391Google Scholar

  • Barnes, C. and B. Bugbee. 1992. Morphological responses of wheat to blue light. J. Plant Physiol., 139,339-342Google Scholar

  • Barta, D.J. and T.W. Tibbitts. 1991. Calcium localization in lettuce leaves with and without tipburn: Comparison of controlled environment and field grown plants. J. Amer. Soc. Hort. Sci., 116, 870-875Google Scholar

  • Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diodes characteristics for a space-based plant irradiation source. Adv. Space Res., 12(5), 141-149Google Scholar

  • Barta, D.J. and K. Henderson. 1998. Performance of wheat for air revitalization and food production during the Lunar-Mars life support test project phase III test. SAE Technical Paper, Series 98104Google Scholar

  • Barta, D.J., J.M. Castillo, and R.E. Fortson. 1999. The biomass production system for the bioregenerative planetary life support systems test complex: Preliminary designs and considerations. SAE Technical Paper, 1999-01-2188Google Scholar

  • Barta, D.J., J.M. Castillo, and R.E. Fortson. 1999. The biomass production system for the bioregenerative planetary life support systems test complex: Preliminary designs and considerations. SAE Technical, Paper 1999-01-2188Google Scholar

  • Batten, J.H., G.W. Stutte, and R.M. Wheeler 1995. Effect of crop development on biogenic emissions from plant populations grown in a closed plant growth chambers. Phytochem., 39, 1351-1357Google Scholar

  • Berkovich, Yu. A., N M. Krivobok, and Yu. E. Sinyak. 1998. Project of conveyer-type space greenhouse for cosmonauts’ supply with vitamin greenery. Adv. Space Res., 22(10), 1401-1405Google Scholar

  • Berkovich, Yu.A., N.M. Krivobok, Yu.Ye. Sinyak, S.O. Smolyanina, Yu.I. Grigoriev, S.Yu. Romanov and A.S. Guissenberg. 2004. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplanetary missions. Advances in Space Research, 34(7),1552-1557CrossrefGoogle Scholar

  • Berkovich, Yu. A., S.O. Smolyanina, N.M. Krivobok, A.N. Erokhin, A.N. Agureev, and N.A. Shanturin. 2009. Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario. Adv. Space Res., 44, 170-176Google Scholar

  • Bingham, G., F. Salisbury, W. Campbell, J. Carman, B.Y. Yendler, V. S. Sytchev, Y. B. Berkovich, M. A. Levinskikh and I. Podolsky. 1996. The spacelab-Mir-1 “Greenhouse-2” experiment. Adv. Space Res., 18, 225-232Google Scholar

  • Bingham, G.E., Levinskikh, M.A., Sytchev V.N., and I.G. Podolsky. 2000. Effects of gravity on plant growth. J. Grav. Physiol., 7, 5-8Google Scholar

  • Bingham, G.E., T.S. Topham, A. Taylor, I.G. Podolshy, M.A. Levinskikh, and V.N. Sychev. 2003. Lada: ISS plant growth technology checkout. SAE Technical Paper, 2003-01-2613Google Scholar

  • Bonsi, C.K., D.G. Mortley, P.A. Loretan, and W.A. Hill. 1994. Temperature and light effects of sweetpotatoes grown hydroponically. Acta Hort., 361, 527-529Google Scholar

  • Brown, C.S., T.W. Tibbitts, J.G. Croxdale, and R.M. Wheeler. 1997. Potato tuber formation in the spaceflight environment. J. Life Support and Biosphere Sci., 4, 71-76Google Scholar

  • Boeing Comp. 1962. Investigations of selected higher plants as gas exchange mechanism for closed ecological systems. In: Biologistics for Space Systems Symposium, May 1962. AMRL-TDR-62-116, Wright-Patterson Air Force Base, Ohio, USA Bonsi, C.K., P.A. Loretan, W.A. Hill, and D.G. Mortley. 1992. Response of sweetpotatoes to continuous light. HortSci., 27, 471Google Scholar

  • Bubgee, B.G. and F.B. Salisbury. 1988. Exploring the limits of crop productivity. Photosynthetic efficiency of wheat in high irradiance environments. Plant Physiol., 88, 869-878Google Scholar

  • Bugbee, B. and O. Monje. 1992. The limits of crop productivity. BioScience, 42, 494-502CrossrefGoogle Scholar

  • Bugbee, B., B. Spanarkel, S. Johnson, O. Monje, and G. Koerner. 1994. CO2 crop growth enhancement and toxicity in wheat and rice. Adv. Space Res., 14, 257-267Google Scholar

  • Bugbee, B.G 1995. Nutrient management in recirculating hydroponic culture. 1995 Proceedings from the Hydroponic Society of America, pp 15-30Google Scholar

  • Bucklin, R.A., P.A. Fowler, V.Y Rygalov, R.M. Wheeler, Y. Mu, L. Hublitz, and E.G. Wilkerson. 2004. Greenhouse design for the Mars environment: Development of a prototype deployable dome. Acta Horticulturae, 659, 127-134Google Scholar

  • Bula, R.J., R.C. Morrow, T.W. Tibbitts, D.J. Barta, R.W. Ignatius, and T.S. Martin. 1991. Light-emitting diodes as a radiation source for plants. HortScience, 26, 203-205Google Scholar

  • Burg, S.P. and E.A. Burg. 1966. Fruit storage at subatmospheric pressures. Science, 153, 314-315Google Scholar

  • Cathey, H.M. and L.E. Campbell. 1980. Light and lighting systems for horticultural plants. Horticultural Reviews, 2, 491-537Google Scholar

  • Cao, W. and T.W. Tibbitts. 1991. Potassium concentrations effect on growth, gas exchange, and mineral accumulation in potatoes. J. Plant Nutr., 14, 525-537CrossrefGoogle Scholar

  • Cao, W. and T.W. Tibbitts. 1994. Phasic temperature change patterns affect growth and tuberization in potatoes. J. Amer. Soc. Hort. Sci., 119, 775-778Google Scholar

  • Chamberlain, C.P., M.A. Stasiak and M.A. Dixon. 2003. Response of plant water status to reduced atmospheric pressure. SAE Technical Paper Series, 2003-01-2677Google Scholar

  • Chaerle, L., D. Hagenbeek, X. Vanrobaeys, and D. Van Der Straeten. 2007. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Intl. J. Remote Sensing, 28, 3479-3492Google Scholar

  • Cook, M.E., J.L. Croxdale, T.W. Tibbitts, C.S. Brown, and R.M. Wheeler. 1998. Development and growth of potato tubers in microgravity. Advances in Space Research, 21,1103-1110 Corey, K.A., D.J. Barta, and D.L. Henninger. 1997. Photosynthesis and respiration of a wheat stand at reduced atmospheric pressure and reduced oxygen. Adv. Space Res., 20(10), 1869-1877Google Scholar

  • Corey, K.A., D.J. Barta, and R.M. Wheeler. 2002. Toward Martian agriculture: Responses of plants to hypobaria. 2002. Life Sup. Biosphere Sci., 8,103-114Google Scholar

  • Cuello, J.D., D. Jack, E. Ono, and T. Nakamura. 2000. Supplemental terrestrial solar lighting for an experimental subterranean biomass production chamber. Soc. Automotive Eng. Tech. Paper, 2000-01-2428Google Scholar

  • Croxdale, J., M. Cook, T.W. Tibbitts, C.S. Brown, and R.M. Wheeler. 1997. Structure of potato tubers formed during spaceflight. J. Exp. Bot., 48, 2037-2043CrossrefGoogle Scholar

  • Daunicht, H.-J. and H.-J. Brinkjans. 1992. Gas exchange and growth of plants under reduced air pressure. Advances in Space Research, 12(5), 107-114CrossrefGoogle Scholar

  • Davis, N. 1985. Controlled-environment agriculture - Past, present, and future. Food Technology, 39, 124-126Google Scholar

  • De Micco, V. R. Buonomo, R. Paradiso, S. De Pascale, and G. Aronne. 2012. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSS) - Theoretical selection. Adv. Space Res., 49, 1415-1421Google Scholar

  • Dixon, M., D. Schmitt. 2001. A Canadian Vision for Advanced Life Support. The Canadian Journal of Space Exploration., 1,1, 6-12Google Scholar

  • Dong, C., Y. Fu, G. Liu, and H. Liu. 2014a. Growth photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J. Agronomy and Crop Sci., 200, 219-230Google Scholar

  • Dong, C., Y. Fu, G. Liu, and H. Liu. 2014b. Low light intensity effects on the growth, photosynthetic characteristic, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.0 at different growth states in BLSS. Adv. Space Res., 53, 1557-1566Google Scholar

  • Dougher, T.A.O. and B.G. Bugbee. 2001. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol., 73, 199-207Google Scholar

  • Dreschel, T.W. and J.C. Sager. 1989. Control of water and nutrient using a porous tube: A method for growth plants in space. HortScience, 24, 944-947Google Scholar

  • Edeen, M.A., J.S. Dominick, D.J. Barta and N.J.C Packham. 1996. Control of air revitalization using plants: Results of the early human testing initiative Phase I Test. SAE Tech. Paper Series, No. 961522Google Scholar

  • Eley, J.H. and J. Myers. 1964. Study of a photosynthetic gas exchanger. A quantitative repetition of the Priestley experiment. Tex. J. Sci., 16, 296-333Google Scholar

  • Fong, F. and E.A. Funkhouser. 1982. Air pollutant production by algal cell cultures. NASA Cooperative Agreement NCC 2-102Google Scholar

  • Fowler, P.A., R.M. Wheeler, R.A. Bucklin, and K.A. Corey. 2000. Low pressure greenhouse concepts for Mars. In: R.M. Wheeler and C. Martin-Brennan (eds.) Mars greenhouses: Concept and Challenges. NASA Tech. Mem. 208577Google Scholar

  • Frantz, J.M., R.J. Joly, and C.A. Mitchell. 2000. Intracanopy lighting influences radiation capture, productivity, and leaf senescence in cowpea canopies. J. Amer. Soc. Hort. Sci., 125, 694-701Google Scholar

  • Fu, Y. L. Li, B. Xie, C. Dong, M. Wang, B. Jia, L. Sho, Y. Dong, S. Deng, H. Liu, G. Liu, B. Liu, D. Hu, and H. Liu. 2016. How to establish a bioregenerative life support system for long-term crewed missions to the Moon and Mars. Astrobiology (In Press)CrossrefGoogle Scholar

  • Gazenko, O.G. 1967. Development of biology in the USSR. In: Soviet Science and Technology for 50 years. Nauka Press, Moscow (In Russian; citation from Salisbury et al., 1997).Google Scholar

  • Gerbaud, A. M. Andre, and C. Richaud. 1988. Gas exchange and nutrition patterns during the life cycle of an artificial wheat crop. Physiol. Plant., 73, 471-478Google Scholar

  • Gianfagna, T.J., L. Logendra, E.F. Durner, and H.W. Janes. 1998. Improving tomato harvest index by controlling crop height and side shoot production. Life Support and Biosphere Science, 5, 255-262Google Scholar

  • Gitelson, I.I., B.G. Kovrov, G.M. Lisovsky, Y.N. Okladikova, M.S. Rerberg, F.Y. Sidko, and I. A. Terskov. 1975. Toxic gases emitted by Chlorella. In: Problems in Space BiologyGoogle Scholar

  • Gitelson, J.I., I.A. Terskov, B.G. Kovrov, R. Ya. Sidko, G.M. Lisovsky, Yu. N. Okladnikov, V.N. Belyanin, I.N. Trubachov, and M.S. Rerberg. 1976. Life support system with autonomous control employing plant photosynthesis. Acta Astronautica, 3, 633-650CrossrefGoogle Scholar

  • Gitelson, J.I., I.A. Terskov, B.G. Kovrov, G.M. Lisoviskii, Yu. N. Okladnikov, F. Ya. Sid’ko, I.N. Tuubachev, M.P. Shilenko, S.S. Alekseev, I.M. Pan’kova, and L.S. Tirranen. 1989. Long-term experiments on man’s stay in biological life-support system. Adv. Space Res., 9(8), 65-71Google Scholar

  • Gitelson, J.I. and Yu. N. Okladnikov. 1994. Man as a component of a closed ecological life support systems. Life Support Biosphere Sci., 1, 73-81Google Scholar

  • Godia, F., J. Albiol, J. Perez, N. Creus, F. Cabello, A. Montras, A. Maso, and Ch. Lasseur. 2004. The MELISSA pilot plant facility as an integration test-bed for advanced life support systems. Advances in Space Research, 34, 1483-1493Google Scholar

  • Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot., 48, 1407-1413CrossrefGoogle Scholar

  • Goins, G.D., L.M. Ruffe, N.A. Cranston, N.C. Yorio, R.M. Wheeler, and J.C. Sager. 2001. Salad crop production under different wavelengths of red light-emitting diodes (LEDs). Soc. Automotive Eng. Tech. Paper, 2001-01-2422Google Scholar

  • Goldman, K.R. and C.A. Mitchell. 1999. Transfer from long to short photoperiods affects production efficiency of day-neutral rice. HortScience, 34, 875-877Google Scholar

  • Golueke, C.G. and W.J. Oswald. 1964. Role of plants in closed systems. Ann. Rev. Plant Physiol., 15, 387-408CrossrefGoogle Scholar

  • Goto, E., Ohta, H., Iwabuchi, K., Takakura, T. Measurement of net photosynthetic and transpiration rates of spinach and maize plants under hypobaric conditions. J. Agric. Meteorol., 1996, 52, 117-123Google Scholar

  • Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Acta Hort., 956, 37-50Google Scholar

  • Greg, P. 2006. Across the zodiac. BiblioBazaar ISBN-1-4264-4026-X (originally written in 1880)Google Scholar

  • Grodzinski, B. 1992. Plant nutrition and growth regulation by CO2 enrichment. BioScience, 42, 517-525CrossrefGoogle Scholar

  • Gros, J.B., L. Poughon, C. Lasseur, and A. A. Tikhomirov. 2004. Recycling efficiencies of C, H, O, N, S, and P elements in a biological life support system based on microorganisms and higher plants Advances in Space Research, 31, 195-199Google Scholar

  • Grotenhuis, T.P. and B. Bugbee. 1997. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat. Crop Science, 37, 1215-1222Google Scholar

  • Guerra, D., A.J. Anderson, and F.B. Salisbury. 1985. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low-pressure sodium lamps. Plant Physiol., 78, 126-130Google Scholar

  • Guo, S., X. Liu, W. Ai, Y. Tang, J. Zhu,, X. Wang, M. Wei, L. Qin, and Y. Yang. 2008. Development of an improved ground-based prototyped of space plant-growing facility. Adv. Space Res., 41, 736-741Google Scholar

  • He, C., F.R. Davies, and R.E. Lacey. 2007. Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange. Physiologia Plantarum, 131, 226-240Google Scholar

  • He, C., R.T. Davies, and R.E. Lacey. 2009. Ethylene reduces gas exchange and growth of lettuce plants under hypobaric and normal atmospheric conditions. Physiol. Plant,135, 258-271Google Scholar

  • Heinse, R., S.B. Jones, S.L. Steinberg, M. Tuller, and D. Or. 2007. Measurements and modeling of variable gravity effects on water distribution and flow in unsaturated porous media. Vadose Zone J., 6, 713-724CrossrefGoogle Scholar

  • Heinse, R., S.B. Jones, M. Tuller, G.E. Bingham, I. Podolskiy, and D. Or. 2009. Providing optimal root-zone fluid fluxes: Effects of hysteresis on capillary-dominated water distributions in reduced gravity. SAE Technical Paper, 2009-01-2360Google Scholar

  • Hoff, J.E., J.M. Howe, and C.A. Mitchell. 1982. Nutritional and cultural aspects of plant species selection for a regenerative life Support system. Report to NASA Ames Research Center, NSG2401 and NSG 2404Google Scholar

  • Hummerick, M.E., J. Garland, G. Bingham, V.N. Sychev, and I.G. Podolsky. 2010. Microbiological analysis of Lada Vegetable Production Units (VPU) to define critical control points and procedures to ensure the safety of space grown vegetables. Amer. Inst. Aeronautics Astronautics, 40th ICES meeting, Barcelona, Spain, July 11-15, 2010. AIAA-2010-6253Google Scholar

  • Iwabuchi, K., E. Goto, and T. Takakura. 1996. Germination and growth of spinach under hypobaric conditions. Environ. Control in Biol., 34, 169-178Google Scholar

  • Iwabuchi, K. and K. Kurata. 2003. Short-term and long-term effects of low total pressure on gas exchange rates of spinach. Adv. Space Res., 31(1), 241-244Google Scholar

  • Jasoni, R., C. Kane, C. Green, E. Peffley, D. Tissue, L. Thompson, P. Payton, and P. W. Pare. 2004. Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environment and Experimental Botany., 51, 273-280Google Scholar

  • Kacira, M., G. Giacomelli, L. Patterson, R. Furfaro, P. Sadler, G. Boscheri, C. Lobascio, M. Lamantea, R. Wheeler, and S. Rossignoli. 2012. System dynamics and performance factors of a lunar greenhouse prototype bioregenerative life support system. Acta Hort., 952, 575-582Google Scholar

  • Karel, M., A.R. Kamarel, and Z. Nakhost. 1985. Utilization of non-conventional systems for conversion of biomass to food components. Potential for utilization of algae in engineered foods. NASA CR-176257Google Scholar

  • Katayama, N., Y. Ishikawa, M. Takaoki, M. Yamashita, S. Nakayama, K. Kiguchi, R. Kok, H. Wada, J. Mitsuhashi,. 2008. Entomophagy: A key to space agriculture. Adv. Space Res., 41, 701-705Google Scholar

  • Kibe, S. and K. Suzuki. 1997. Japan’s activities on CELSS in space. In: P. M. Bainum, G.L. May, M. Nagatomo, K.T. Uesugi, F. Bingchen, and Z. Hui (eds.), Space Cooperation into the 21st Century (7th ISCOPS) AAS 97-459, 96, 605-125Google Scholar

  • Kim, H-H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Stomatal of lettuce grown under or exposed to different light qualities. Annals of Botany, 94, 691-697CrossrefGoogle Scholar

  • Kim, H-H., J. Norikane, R.M. Wheeler, J.C. Sager, and N.C. Yorio. 2007. Electric lighting considerations for crop production in space. Acta Horticulturae, 761, 193-202Google Scholar

  • Kitaya, Y. M. Kawai, J. Tsuruyama, H. Takahashi, A. Tani, E. Goto, T. Saito, M. Kiyota. 2003. The effect of gravity on surface temperature of plant leaves. Plant, Cell Environment, 26, 497-503CrossrefGoogle Scholar

  • Kitaya, Y. and H. Hirai. 2008. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility. Adv. Space Res., 41, 763-676Google Scholar

  • Kitaya, Y. H. Hirai, X. Wei, A.F.M.S. Islam, and M. Yamamoto. 2008. Growth of sweetpotato cultured in the newly designed hydroponic system for space farming. Adv. Space Res., 41, 730-735CrossrefGoogle Scholar

  • Klassen, S.P. and B. Bubgee. 2004. Ethylene synthesis and sensitivity in crop plants. HortScience, 39, 1546-1552Google Scholar

  • Kliss, M. and R.D. MacElroy. 1990. Salad machine: A vegetable production unit for long duration space missions. SAE Tech. Paper 901280. Williamsburg, VA, USA. July 1990Google Scholar

  • Kliss, M., A.G. Heyenga, A. Hoehn and L.S. Stodieck. 2000. Recent advances in technologies required for a “Salad Machine”. Adv. Space Res., 26(2), 263-269Google Scholar

  • Knight, S.L. and C.A. Mitchell. 1988. Effects of incandescent radiation on photosynthesis, growth rate and yield of Waldmann’s Green’ leaf lettuce . Scientia Horticulturae, 35, 37-49Google Scholar

  • Krauss, R. 1962. Mass culture of algae for food and other organic compounds. Amer. J. Botany, 49, 425-435Google Scholar

  • Krall, A.R. and B. Kok. 1960. Studies on algal gas exchanges with reference to space flight. Developments in Industrial Microbiology, 1, 33-44Google Scholar

  • Lasseur, C., W. Verstraete, J.B. Gros, G. Dubertret, and F. Rogalla. 1996. MELISSA: a potential experiment for a precursor mission to the Moon. Adv. Space Res., 18, 111-117Google Scholar

  • Lange, K, A.T. Perka, B.E. Duffield and F.F. Jeng 2005. Bounding the spacecraft atmosphere design space for future exploration missions. NASA Contractor Report CR-2005-213689Google Scholar

  • Law, J., M, Van Baalen, M. Foy, S.S. Mason, C. Mendez, M.L. Wear, V.E. Meyers, and D. Alexander. 2014. Relationship between carbon dioxide levels and reported headaches on the International Space Station. J. Occupational Environ. Medicine, 56(5), 477-483Google Scholar

  • Lenk, S., L. Chaerle, E.E. Pfundel, G. Langsdorf, D. Hagenbeek, H.K. Lichtenthaler, D. Van Der Straeten, and C. Buschmann. 2007. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J. Experimental Botany, 58, 807-814Google Scholar

  • Ley, W. 1948. Rockets and space travel. The future of flight beyond the stratosphere. The Viking Press, New York, NY, USA. pp. 374Google Scholar

  • Levinskikh, M.A., V.N. Sychev, T.A. Derendyaeva, O.B. Signalova, F.B. Salisbury, W.F. Campbell, G.E. Bingham, D.L. Bubenheim, and G. Jahns. 2000. Analysis of the spaceflight effects on growth and development of Super Dwarf wheat grown on the space station Mir. J. Plant Physiol., 156, 522-529Google Scholar

  • Levine, L.H., P.A. Bisbee, T.A. Richards, M.N. Birmele, R.L. Prior, M. Perchonok, M. Dixon, N.C. Yorio, G.W. Stutte, and R.M. Wheeler. 2008. Quality characteristics of radish grown under reduced atmospheric pressure. Adv. Space Res., 41, 754-762Google Scholar

  • Lisovsky, G.M., J.I. Gitelson, M.P. Shilenko, I.V. Brivovskaya, and I.M Trubachev. 1997. Direct utilization of human liquid wastes by plants in a closed ecosystem. Adv. Space Res., 20(10), 1801-1804Google Scholar

  • Loader, C.A., J.L. Garland, L.H. Levine, K.L. Cook, C.L. Mackowiak, and H.R. Vivenzio. 1999. Direct recycling of human hygiene water into hydroponic plant growth systems. Life Support Biosphere Sci., 6, 141-152Google Scholar

  • Lobascio, C., M. Lamantea, M.A. Perino, L. Bertaggia, V. Bornicsacci, and F. Piccolo. 2006. Plant facilities for inflatable habitats. ICES Tech. Paper, 2006-01-2214Google Scholar

  • Lobascio, C., M. Lamantea, S. Palumberi, V. Cotronei, B. Negri, S. De Pascale, A. Maggio, M. Maffei, and M. Fote. 2008. Functional architecture and development of the CAB bioregenerative system. SAE Technical Paper, 2008-01-2012Google Scholar

  • MacElroy, R.D. and J. Bredt. 1985. Current concepts and future directions of CELSS. Adv. Space Res., 4(12), 221-230Google Scholar

  • MacElroy, R.D., M. Kliss, and C. Straight. 1992. Life support systems for Mars transit. Adv. Space Res., 12(5), 159-166Google Scholar

  • Mackowiak, C.L, R.M. Wheeler, G.W. Stutte, N.C. Yorio, and L.M. Ruffe. 1998. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.). HortScience, 33, 650-651Google Scholar

  • Mansell, R.L. 1968. Effects of prolonged reduced pressure on the growth and nitrogen content of turnip (Brassica rapa L.). SAM-TR-68-100. School of Aerospace Medicine, Brooks Air Force Base, TexasGoogle Scholar

  • Massa, G.D, H.H. Kim, R.M. Wheeler, and C.A. Mitchell 2008. Plant productivity in response to LED lighting. HortScience, 43(7), 1951-1956Google Scholar

  • Massa, G.E., N.F. Dufour, J.A. Carver, M.E. Hummerick, R.M. Wheeler, R.C. Morrow, T.M. Smith. 2016. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agricul. (in press)Google Scholar

  • Masuda, T., T. Ogasawara, E. Harashima, Y. Tako, and K. Nitta. 2005. Evaluation and implementation of an advanced life support (ALS) menu for Closed ecology Experiment Facilities (CEEF). Eco-Engineering, 17(1), 55-60Google Scholar

  • Matthern, R.O. and R.B. Koch. 1964. Developing an unconventional food, algae, by continuous culture under high light intensity. Food Technol., 18, 58-65Google Scholar

  • McAvoy, R.J., H.W. Janes, B.L. Godfriaux, M. Secks, D. Duchai, and W.K. Wittman. 1989. The effect of total available photosynthetic photon flux on single truss tomato growth and production. J. Hort. Science, 64, 331-338Google Scholar

  • Mergeay, M., W. Verstraete, G. Dubertet, M. Lefort-Tran, C. Chipaux, and R. Binot. 1987. MELISSA- A microorganisms-based model for CELSS develop. Proceedings 3rd European Symp. Space Thermal Control and Life Support Systems, Noordwijk, ESA SP-288. pp. 65-68Google Scholar

  • Mitchell, C.A., M.P. Dzakovich, C. Gomez, R. Lopez, J.F. Burr, R. Hernandez, C. Kubota, C.J. Currey, Q. Meng, E. S. Runkle, C. M. Bourget, R.C. Morrow, and A.J. Both. 2015. Light-emitting diodes in horticulture. Horticultural Reviews, Volume 43, 1-87Google Scholar

  • Miller, R.L. and C.H. Ward. 1966. Algal bioregenerative systems. In: E. Kammermeyer (ed.) Atmosphere in space cabins and closed environments. Appleton-Century-Croft Pub., New York., pp. 186-221Google Scholar

  • Monje, O., and B. Bugbee. 1998. Adaptation to high CO2 concentration in an optimal environment: Radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ., 21, 315-324CrossrefGoogle Scholar

  • Monje, O., G. Stutte, and D. Chapman. 2005. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Planta, 222, 336-345Google Scholar

  • Morrow, R.C., W.R. Dinauer, R.J. Bula, and T.W. Tibbitts. 1993. The ASTROCULTURE™-1 flight experiment: Pressure control of the WCSAR porous tube nutrient delivery system. SAE Technical Paper Series, No. 932292Google Scholar

  • Morrow, R.C. 2008. LED lighting in horticulture. HortScience, 43(7), 1947-1950Google Scholar

  • Mortley, D.G., C.K. Bonsi, P.A. Loretan, C.E. Morris, W.A. Hill, and C.R. Ogbuehi. 1991. Evaluation of sweet potato genotypes for adaptability to hydroponic systems. Crop Sci., 31, 845-847CrossrefGoogle Scholar

  • Mortley, D.G., C.K. Bonsi, W.A. Hill, P.A. Loretan, and C.E. Morris. 1993. Irradiance and nitrogen to potassium ratio influences sweetpotato yield in nutrient film technique. Crop Science, 33, 782-784Google Scholar

  • Mortley, D., J. Hill, P. Loretan, C. Bonsi, and W. Hill. 1996. Elevated carbon dioxide influences yield and photosynthetic responses of hydroponically-grown sweetpotato. Acta Hort., 440, 31-36Google Scholar

  • Mortley, E.G., C.K. Bonsi, P.A. Loretan, W.A. Hill, and C.E. Morris. 2000. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants. HortSci., 35, 46-48Google Scholar

  • Myers, J. 1954. Basic remarks on the use of plants as biological gas exchangers in a closed system. J. Aviation Med., 25, 407-411Google Scholar

  • Nakamura, T., A.D. van Pelt, N.C. Yorio, A.E. Drysdale, R.M. Wheeler, and J.C. Sager. 2009. Transmission and distribution of photosynthetically active radiation (PAR) from solar and electric light sources. Habitation, 12(1), 103-117Google Scholar

  • Nelson, M., W.F. Dempster, S. Silverstone, A. Alling, J.P. Allen and M. van Thillo. 2005. Crop yield and light/energy efficiency in a closed ecological system: Laboratory biosphere experiments with wheat and sweet potato. Advances in Space Research, 35(9), 1539-1543Google Scholar

  • Nelson, M., W.F. Dempster, J.P. Allen, S. Silverston, A. Alling, and M. van Thillo. 2008. Cowpeas and pinto beans: Performance and yield of candidate space crops in the laboratory biosphere closed ecological system. Adv. Space Res. ,41, 748-753Google Scholar

  • Nitta, K. and M. Yamashita. 1985. Concept study on the technology of CELSS. Earth-Orient. Applic. Space Technol., 5(3), 253-263Google Scholar

  • Nitta, K. K. Otsubo, and A. Ashida. 2000. Integration test project of CEEF-A test bed for closed ecological life support Systems Adv. Space Res., 26, 335-338CrossrefGoogle Scholar

  • Ohler, T.A. and C.A. Mitchell. 1996. Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario. J. Amer. Soc. Hort. Sci., 121, 576-581Google Scholar

  • Paradiso, R., R. Buonomo, V. De Micco, G. Aronne, M. Palermo, G. Barbieri, and S. De Pascale. 2012. Soybean cultivar selection for bioregenerative life support systems (BLSSs) - Hydroponic cultivation. Adv. Space Res., 50, 1501-1511Google Scholar

  • Paradiso, R., V. De Micco, R. Buonomo, G. Aronne, G. Barbier, and S. De Pascale. 2014. Soilless cultivation of soybean for Bioregenerative Life-Support Systems: a literature review and the experience of the MELiSSA Project - food characterisation Phase I. Plant Biology, 16, (Suppl. 1), 69-78Google Scholar

  • Patterson, R.L., G.A. Giacomelli, and P.A. Sadler. 2008. Resource and production model for the South Pole food growth chamber. SAE Technical Paper, 2008-01-2011Google Scholar

  • Paul, A-L., A.C. Schuerger, M.P. Popp, J.T. Richards, M.S. Manak, R.J. and Ferl. 2004. Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Physiol., 134, 215-223Google Scholar

  • Porter M.A. and B. Grodzinski. 1985. CO2 enrichment of protected crops. Horticultural Reviews, 7, 345-398Google Scholar

  • Prince, R.P. and J.W. Bartok. 1978. Plant spacing for controlled environment plant growth. Trans. Amer. Soc. Agric. Eng., 21, 332-336CrossrefGoogle Scholar

  • Prince, R.P. and W.M. Knott. 1989. CELSS Breadboard Project at the Kennedy Space Center. In D.W. Ming and D.L. Henninger (eds.). Lunar Base Agriculture: Soils for Plant Growth. Amer. Soc. of Agronomy, Madison, WI, USA. pp. 155-163Google Scholar

  • Qin, L., S. Guo, W. Ai, and Y. Tang. 2008. Selection of candidate salad vegetables for controlled ecological life support system. Advances in Space Research, 41, 768-772Google Scholar

  • Qin, L., S. Guo, W. Ai, Y. Tang, Q. Cheng, G. Chen. 2013. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system. Adv. Space Res., 51, 476-482Google Scholar

  • Ren, J., S. Guo, C. Xu, C. Yang, W. Ai, Y. Tang, and L. Qin. 2014. Effects of different carbon dioxide and LED lighting levels on the anti-oxidative capabilities of Gynura bicolor DC. Adv. Space Res., 53, 353-361Google Scholar

  • Resh, H.M. 1989. Hydroponic food production. 4th Edition. Woodbridge Press Publ. Comp., Santa Barbara CA. pp. 462Google Scholar

  • Rossignoli, S. and Aero Sekur Inc. 2016. Co-organizer and sponsor of AgroSpace Workshops from 2006-2016: http://www.agrospaceconference.com/Google Scholar

  • Rygalov, V.Y., P. A. Fowler, R.M. Wheeler, and R.A. Bucklin. 2004. Water cycle and its management for plant habitats at reduced pressures. Habitation, 10(1), 49-59Google Scholar

  • Sadler, P. 1995. The Antarctic horticultural project. Proc. Hydroponic Soc. Amer. 16th Ann. Conf. on Hydroponics, Tucson, AZ. pp. 95-107Google Scholar

  • Sadler, P.D. and G.A. Giacomelli. 2002. Mars inflatable greenhouse analog. Life Support Biosphere Sci., 8, 115-123Google Scholar

  • Salisbury, F.B. 1991. Lunar farming: Achieving maximum yield for the exploration of space. HortScience, 26(7), 827-833Google Scholar

  • Salisbury, F.B., J.E. Gitelson, and G.M. Lisovsky. 1997. Bios-3: Siberian experiments in bioregenerative life support. BioScience ,47, 575-585Google Scholar

  • Salisbury, F.B., W. F. Campbell, J. G. Carman, G. E. Bingham, D. L. Bubenheim, B. Yendler, V. Sytchev, M. A. Levinskikh, I. Ivanova, L. Chernova and I. Podolsky. 2003. Plant growth during the greenhouse II experiment on the Mir orbital station. Adv. Space Res., 31(1), 221-227Google Scholar

  • Schubert, D. D. Quantius, J. Hauslage, L. Glasgow, F. Schroder, and M. Dorn. 2011. Advanced Greenhouse Modules for use within Planetary Habitats. 41st ICES, Portland, Oregon AIAA 2011-5166Google Scholar

  • Schuerger, A.C., C.S. Brown, and E.C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Botany, 79, 273-282CrossrefGoogle Scholar

  • Schwartzkopf, S.H. 1985. A non-destructive method for monitoring plant growth. HortSci., 20, 432-434Google Scholar

  • Schwartzkopf, S.H. and R.L. Mancinelli. 1991. Germination and growth of wheat in simulated Martian atmospheres. Acta Astronautica, 25(4), 245-247CrossrefGoogle Scholar

  • Sorokin, C. and J. Myers. 1953. A high-temperature strain of Chlorella. Science, 117, 330-331Google Scholar

  • Stasiak, M.A., R. Cote, M. Dixon, and B. Grodzinski. 1998. Increasing plant productivity in closed environments with inner canopy illumination. Life Supp. Biosph. Sci., 5, 175-182Google Scholar

  • Stasiak, M., G. Waters, Y. Zheng, B. Grodzinski and M. Dixon. 2003. Integrated multicropping of beet and lettuce and its effect on atmospheric stability. SAE Technical Paper, 2003-01-2357Google Scholar

  • Stasiak, M., D. Gidzinski, M. Jordan, and M. Dixon. 2012. Crop selection for advanced life support systems in the ESA MELiSSA program: Durum wheat (Triticum turgidum var. durum). Adv. Space Res., 49, 1684-1690Google Scholar

  • Strayer, R.F., M.P. Alazraki, N. Yorio, and B.W. Finger. 1998. Bioprocessing wheat residues to recycle plant nutrients to the JSC variable pressure growth chamber during the L/MLSTP Phase III test. SAE Tech. Paper Series 981706Google Scholar

  • Stutte, G.W., C.L. Mackowiak, N.C. Yorio, and R.M. Wheeler. 1999. Theoretical and practical considerations of staggered crop production in a BLSS. Life Support Biosphere Sci., 6, 287-291Google Scholar

  • Stutte, G.W., O. Monje, G.D. Goins, and B.C. Tripathy. 2005. Microgravity effects on thylakoid, leaf, and whole canopy photosynthesis of dwarf wheat. Planta, 223, 46-56Google Scholar

  • Subbarao, G.V., R.M. Wheeler, and G.W. Stutte. 2000. Feasibility of substituting sodium for potassium in crop plants for advanced life support systems. Life Sup. Biosphere Sci., 7, 225-232Google Scholar

  • Sugimoto, M. Y. Oono, O. Gusev, T. Matsumoto, T. Yazawa, M. A. Levinshkikh, V.N. Sychev, G.E. Bingham, R. Wheeler and M. Hummerick. 2014. Genome-wide expression analysis of reactive oxygen species gene network in mizuna plants grown in long-term spaceflight. BMC Plant Biology, 2014, 14,4Google Scholar

  • Sytchev, V.N., E.Ya. Shepelev, G.I. Meleshhko, T.S. Gurieva, M.A. Levinskikh, I.G. Podolshy, O.A. Dadsheva, and V.V. Popov. 2001. Main characteristics of biological components of developing life support system observed during experiment about orbital complex MIR. Adv. Space Res., 27(9), 1529-1534Google Scholar

  • Sytchev, V.N., M.A. Levinskikh, S.A. Gostimsky, G.E. Bingham, and I.G. Podolsky. 2007. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronautica, 60, 426-432CrossrefGoogle Scholar

  • Tako, Y., R. Arai, K. Otsubo, and K. Nitta. 2001. Integration of sequential cultivation of main crops and gas and water processing subsystems using closed ecology experiment facility. SAE Technical Paper, 2001-01-2133Google Scholar

  • Tako, Y. S. Tsuga, T. Tani, R. Arai, O. Komatsubara, and M. Shinohara. 2008. On-week habitation of two humans in an airtight facility with two goats and 23 crops-Analysis of carbon, oxygen, and water circulation. Adv. Space Res., 41, 714-724Google Scholar

  • Tako, Y., R. Arai, S. Tsuga, O., Komatsubara, T. Masuda, S. Nozoe, and K. Nitta. 2010. CEEF: Closed Ecology Experiment Facilities. Gravitation and Space Biol., 23(2), 13-24Google Scholar

  • Tani, A., Y. Kitaya, M. Kiyota, I. Aiga, and K. Nitta. 1996. Problems related to plant cultivation in a closed system. Life Support and Biosphere Sci., 3, 129-140Google Scholar

  • Tang, Y. S. Guo, W. Dong, L. Qin, W. Ai, and S. Lin. 2010. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce. Adv. Space Res., 46, 751-760CrossrefGoogle Scholar

  • Taub, R.B. 1974. Closed ecological systems. In: R.F. Johnston, P.W. Frank, and C.D. Michener (eds.) Annual Review of Ecology and Systematics. Annual Reviews Inc., Palo Alto, CA. pp. 139-160CrossrefGoogle Scholar

  • Tennessen, D.J., R.L. Singsaas, and T.D. Sharkey. 1994. Lightemitting diodes as a light source for photosynthesis research. Photosynthesis Research, 39, 85-92Google Scholar

  • Tibbitts, T.W. and D.K. Alford. 1982. Controlled ecological life support system. Use of higher plants. NASA Conf. Publ., 2231Google Scholar

  • Tikhomirov А.А., S.А. Ushakova, N.S. Manukovsky, G.М. Lisovsky, Yu. А. Kudenko, Kovalev, I.V. Gribovskaya, L.S. Tirranen, I.G. Zolotukhin, J.B. Gros, Ch. Lasseur. 2003. Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system. Acta Astronautica, 53, 249-257Google Scholar

  • Tikhomirova N.A., S.A. Ushakova, N.P. Kovaleva, I.V. Gribovskaya, and A.A. Tikhomirov. 2005. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link. Adv. Space Res., 35, 1589-1593Google Scholar

  • Tolley-Henry, L. and C.D. Raper Jr. 1986. Utilization of ammonium as a nitrogen source. Effects of ambient acidity on growth and nitrogen accumulation by soybean. Plant Physiol., 82, 54-60CrossrefGoogle Scholar

  • Tripathy, B.C. and C.S. Brown. 1995. Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiol., 107, 407-411Google Scholar

  • Tsiolkovsky, K.E. 1975. Study of outer space by reaction devices. In: NASA Technical Translation NASA TT F-15571 of “Issledovaniye mirovykh prostranstv reaktivnymi priborami”, Mashinotroyeniye Press, Moscow, 1967Google Scholar

  • Wada, H., M. Yamashita, N. Katayama, J. Mitsuhashi, H. Takeda, and H. Hashimoto. 2009. Agriculture on Earth and on Mars. In: J .H. Denis and P.D. Aldridge (eds.), Space Exploration Research, pp. 481-498Google Scholar

  • Wang, M., B. Xie, Y. Fu, C. Dong, L. Hui, L. Guanghui, and H. Liu. 2015a. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynthesis Research, 126(2-3), 351-362Google Scholar

  • Wang, M., Y. Fu, and H. Liu. 2015b. Nutritional status and ion uptake response of Gynura bicolor DC between Porous-tube and traditional hydroponic growth systems. Acta Astronautica, 113, 13-21Google Scholar

  • Waters, G.R., A. Olabi, J.B. Hunter, M.A. Dixon and C. Lasseur. 2002. Bioregenerative food system cost based on optimized menus for advanced life support. Life Support and Biosphere Science, 8(3/4), 199-210Google Scholar

  • Wehkamp, C.A., M. Stasiak, J. Lawson, N. Yorio, G. Stutte, J. Richards, R. Wheeler, and M. Dixon. 2012. Radish (Raphanus sativa L. cv. Cherry Bomb II) growth, net carbon exchange rated, and transpiration at decreased atmospheric pressure and / or oxygen. Gravitational and Space Biol., Vol. 26(1), 3-16Google Scholar

  • Wheeler, R.M. and T.W. Tibbitts. 1986. Growth and tuberization of potato (Solanum tuberosum L) under continuous light. Plant Physiol., 801-804CrossrefGoogle Scholar

  • Wheeler, R.M., C.L. Mackowiak, J.C. Sager, W.M. Knott, and C.R. Hinkle. 1990. Potato growth and yield using nutrient film technique. American Potato Journal, 67, 177-187Google Scholar

  • Wheeler, R.M., T.W. Tibbitts, and A.H. Fitzpatrick. 1991. Carbon dioxide effects on potato growth under different photoperiods and irradiance. Crop Science, 31, 1209-1213CrossrefGoogle Scholar

  • Wheeler, R.M., C.L. Mackowiak, L.M. Siegriest, and J.C. Sager. 1993a. Supraoptimal carbon dioxide effects on growth of soybean (Glycine max (L.) Merr.). J. Plant Physiol. 142:173-178.Google Scholar

  • Wheeler, R.M., K.A. Corey, J.C. Sager, and W.M. Knott. 1993b. Gas exchange rates of wheat stands grown in a sealed chamber. Crop Sci., 33, 161-168Google Scholar

  • Wheeler, R.M., G.W. Stutte, C.L. Mackowiak, N.C. Yorio, and L.M. Ruffe. 1995. Accumulation of possible potato tuber-inducing factor in continuous use recirculating NFT systems. HortSci., 30, 790 (#262)Google Scholar

  • Wheeler, R.M., C.L. Mackowiak, G.W. Stutte, J.C. Sager, N.C. Yorio. L.M. Ruffe, R.E. Fortson, T.W. Dreschel, W.M. Knott, and K.A. Corey. 1996a. NASA’s Biomass Production Chamber: A testbed for bioregenerative life support studies. Adv. Space Res., 18(4/5), 215-224Google Scholar

  • Wheeler, R.M., B.V. Peterson, J.C. Sager, and W.M. Knott. 1996b. Ethylene production by plants in a closed environment. Adv. Space Res., 18(4/5), 193-196Google Scholar

  • Wheeler, R.M. and C. Martin-Brennan (eds.). 2000. Mars greenhouses: Concept and Challenges. Proceedings from a 1999 Workshop. NASA Tech. Memorandum 208577Google Scholar

  • Wheeler, R.M., B.V. Peterson, and G.W. Stutte. 2004. Ethylene production throughout growth and development of plants. HortScience, 39(7), 1541-1545Google Scholar

  • Wheeler, R.M., G.W. Stutte, C.L. Mackowiak, N.C. Yorio, J.C. Sager, and W.M. Knott. 2008. Gas exchange rates of potato stands for bioregenerative life support. Adv. Space Res., 41, 798-806Google Scholar

  • Wolverton, B.C., R.C. McDonald, and W.R. Duffer. 1983. Microorganisms and plants for waste water treatment. J. Environ. Qual., 12, 236-242CrossrefGoogle Scholar

  • Wolff, S.A., L.H. Coelho, M. Zabrodina, E. Brinckmann, A.-I. Kittang. 2013. Plant mineral nutrition, gas exchange and photosynthesis in space: A review. Adv. Space Res., 51, 465-475Google Scholar

  • Wright, B.D., W.C. Bausch, and W.M. Knott. 1988. A hydroponic system for microgravity plant experiments. Trans. Amer. Soc. Agricul. Eng., 31, 440-446CrossrefGoogle Scholar

  • Yamashita, M, N. Katayama, H. Hashimoto, and K. Toita-Yokotani. 2007. Space agriculture for habitation on Mars-Perspective from Japan and Asia. J. Jpn. Soc. Microgravity Appl., 24(4), 340-347Google Scholar

  • Yamashita, M. H. Hashimoto, and H. Wada. 2009. On-site resources availability for space agriculture on Mars. In: V. Badescu (ed.), Mars: Prospective Energy and Material Resources, Springer- Verlag, Berlin. pp. 517-542Google Scholar

  • Zabel, P., M. Bamsey, D. Schubert, M. Tajmar. 2016. Review and analysis of over 40 years of space plant growth systems. Life Sciences in Space Research, 10, 1-16Google Scholar

About the article

Received: 2016-12-14

Accepted: 2017-01-15

Published Online: 2017-02-10

Published in Print: 2017-02-01

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 14–32, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Silje Wolff, Carolina Palma, Leo Marcelis, Ann-Iren Kittang Jost, and Sander van Delden
Life, 2018, Volume 8, Number 4, Page 45
Lucie Poulet, Jean-Pierre Fontaine, and Claude-Gilles Dussap
Astrobiology, 2018
Alain Maillet
Techniques & culture, 2018, Number 69, Page 184
Briardo Llorente, Thomas Williams, and Hugh Goold
Genes, 2018, Volume 9, Number 7, Page 348

Comments (0)

Please log in or register to comment.
Log in