Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Increased vulnerability to wildfires and post fire hydro-geomorphic processes in Portuguese mountain regions: what has changed?

A. N. Nunes
  • Corresponding author
  • Center for Studies in Geography and Spatial Planning (CEGOT), Department of Geography and Tourism, Largo da Porta Férrea, University of Coimbra, 3004-530 Coimbra, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Lourenço
  • Center for Studies in Geography and Spatial Planning (CEGOT), Department of Geography and Tourism, Largo da Porta Férrea, University of Coimbra, 3004-530 Coimbra, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-01 | DOI: https://doi.org/10.1515/opag-2017-0008


The main objectives of this study were to understand the frequency of forest fires, post-fire off-site hydrological response and erosional processes from a social and ecological perspective in two basins located in the central cordillera, Portugal. It also discusses the driving forces that contribute towards increasing the social-ecological vulnerability of systems in the face of hazards and emphasizes the importance of learning from disasters. Based on the historical incidence of wildfires, it is possible to identify several areas affected by two, three or four fires, since 1975. Following the two major fires, in 1987 and 2005, flash floods, intense soil erosion and sedimentation processes were generated, causing severe damage. Significant socioeconomic, political and ecological changes have been affecting mountain regions in the last decades. Approximately 80% of the population and more than 90% of the livestock have disappeared, common lands have been afforested with Pinus pinaster, and several agricultural plots have been abandoned. These factors have all contributed towards creating non- or submanaged landscapes that have led to a dramatic increase in the magnitude and frequency of wildfires and to post-fire hydrological and erosional processes when heavy rainfall occurs. Moreover, the low population density, high level of population ageing and very fire-prone vegetation that now covers large areas of both basins, contribute to a situation of extreme socio-ecological vulnerability, meaning that disasters will continue to occur unless resilience can be restored to improve the capacity to cope with this high susceptibility to hazards.

Keywords : Wildfires; Flash floods; Erosive processes; social and ecological vulnerability; Mountains of Central Portugal


  • Agrarian Survey and Management Service, A utilizacao do solo em Portugal Continental. Lisboa, Secretaria de Estado da Agricultura, Servico de Reconhecimento e Ordenamento Agrario,1972Google Scholar

  • Bajocco S., Ricotta C., Evidence of selective burning in Sardinia (Italy): which land cover classes do wildfires prefer?, Landscape Ecol, 2008, 23, 241-248CrossrefGoogle Scholar

  • Birkmann J., Cardona O.D., Carreno M.L., Barbat H., Pelling M., Schneiderbauer S., Kienberger S., Keiler M., Alexander D., Zeil P., Welle T., Framing vulnerability, risk and societal responses: the MOVE framework, Nat. Hazards, (2013), 67, 193-211Google Scholar

  • Blaikie P., Cannon T., Davis I., Wisner B., At risk: natural hazards, people’s vulnerability, and disasters, Routledge, London, 1994Google Scholar

  • Bokhtiar S.M., Karim A.J.M.S., Hossain, K.M., Hossain T., Egashira K., Response of radish to varying levels of irrigation water and fertilizer potassium on clay terrace soil of Bangladesh, Soil Science and Plant Analysis, 2001, 32 (17-18), 2979-2991Google Scholar

  • Carmo M., Moreira F., Casimiro P., Vaz P., Land use and topography influences on wildfire occurrence in northern Portugal, Landscape Urban Plan, 2011, 100, 169-76CrossrefGoogle Scholar

  • Catry F.X., Rego F.C., Bacao F.L., Moreira F., Modeling and mapping wildfire ignition risk in Portugal, Int. J. Wildland Fire, 2009,18 (8), 921-931Google Scholar

  • Cutter S.L., A ciencia da vulnerabilidade: Modelos, metodos e indicadores. Rev. Crit. Cienc. Sociais, 2011, 93, 59-69Google Scholar

  • DeBano L.F., The role of fire and soil heating on water repellency in wildland environments: a review, Journal of Hydrology, 2000, 231-232, 195-206Google Scholar

  • Doehring D.O., The effect of fire on geomorphic processes in the San Gabriel Mountains, California, In: Parker RB. Editor. Contributions to Geology. Laramie. University of Wyoming, Wyoming, 1968, 43-65Google Scholar

  • Ganteaume A., Jappiot M., What causes large fires in Southern France, Forest Ecol Manag, 2013, 294, 76-85Google Scholar

  • García-Ruiz J., Lana-Renault N., Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region - A review, Agriculture, Ecosystems & Environment, 2011, 140 (3-4), 317-338Google Scholar

  • Gardner J.S., Dekens J. Mountain Hazards and the Resilience of Social-ecological Systems: Lessons Learned in India and in Canada. Natural Hazards, 2007, 41 (2), 317-336CrossrefGoogle Scholar

  • Helvey J.D., Effects of a north central Washington wildfire on runoff and sediment production, Water Resources Bulletin, 1980, 16, 627-634.CrossrefGoogle Scholar

  • Hewitt K., Risks and disasters in mountain lands, In: Messerli B., Ives J.D. (eds) Mountains of the world: a global priority. Parthenon Publishing, New York, 1997, 371-408Google Scholar

  • ICNF (Instituto de Conservacao da Natureza e Florestas), Plano Nacional de Defesa da Floresta Contra Incendios (PNDFCI). Resolucao do Conselho de Ministros n.o 65/2006 (assessed on 10th November 2014), 2006Google Scholar

  • Jansa A., Alpert P., Arbogast P., Buzzi A., Ivancan-Picek B., Kotroni V., Llasat M.C., Ramis C., Richard E., Romero R., Speranza A., MEDEX: A general overview, Natural Hazards and Earth System Sciences, 2014,14 (8),1965-1984Google Scholar

  • JRC, Forest Fires in Europe 2004, Joint Researcher Center S.P.I.05.147 EN European Communities, 2005Google Scholar

  • Kasai M., Marutani T., Reid L.M., Trustrum N.A., Estimation of temporally averaged sediment delivery ratio using agradational terraces in headwater catchments of the Waipaoa river, North Island, New Zealand, Earth Surface Processes and Landforms, 2001, 26, 1-16CrossrefGoogle Scholar

  • Klinenberg S., Heat wave. University of Chicago Press, Chicago, 2002Google Scholar

  • Leichenko R.M., O’Brien K.L., The dynamics of rural vulnerability to global change: the case of southern Africa, Mitigation and Adaptation Strategies for Global Change, 2002, 7, 1-18Google Scholar

  • Llorens P., Latron J., Gallart F., Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountains basin. (High Llobregat, Eastem Pyrenees), Pirineos, 1992, 139, 27-46Google Scholar

  • Lloret F., Pausas J.G., Vila M., Responses of Mediterranean plant species to different fire frequencies in Garraf Natural Park (Catalonia, Spain): Field observations and modelling predictions, Plant Ecology 2003, 167, 223-235Google Scholar

  • Loaiciga H.A., Pedreros D., Roberts D., Wildfire-streamflow interaction in a chaparral watershed, Advances in Environmental Research, 2001, 5, 295-305CrossrefGoogle Scholar

  • Lourenço L., Paisagens de Socalcos e Riscos Naturais em vales do Rio Alva, Colectaneas Cindinicas VI, Projecto Interreg III B/ Sudoe-Terrisc, Nucleo de Investigacao Cientifica de Incendios Florestais da Faculdade de Letras da Universidade de Coimbra, Lousa, 2006a (in Portuguese)Google Scholar

  • Lourenço L., Bacias hidrograficas das ribeiras do Piodao e de Pomares (Concelho de Arganil). Terrisc - Recuperacao de paisagens de socalcos e prevencao de riscos naturais nas serras do Acor e da Estrela, Relatorio Tecnico 0605, Projecto Interreg III B/Sudoe-Terrisc, Nucleo de Investigacao Cientifica de Incendios Florestais da Faculdade de Letras da Universidade de Coimbra, Lousa, Portugal, 2006b (in Portuguese)Google Scholar

  • Lourenço L., Riscos Ambientais e Formacao de Professores (Actas das VI Jornadas Nacionais do Prosepe), Colectaneas Cindinicas VII, Projecto de Sensibilizacao e Educacao Florestal e Nucleo de Investigacao Cientifica de Incendios Florestais e Faculdade de Letras da Universidade de Coimbra, Coimbra, Portugal, 2007 (in Portuguese)Google Scholar

  • Lourenço L., Nunes A., O flagelo das chamas e a recorrencia de eventos hidrogeomorfologicos intensos. O exemplo da bacia do rio Alva (Portugal), Waterlat-Gobacit Network, Working Paper, “Water-related disasters: from trans-scale challenges to interpretative multivocality, 2014, 1 (1), 43-90Google Scholar

  • Lourenço L., Nunes A., Bento Goncalves A., Vieira A., Soil Erosion After Wildfires in Portugal: What Happens When Heavy Rainfall Events Occur?, In: Godone D., Stanchi S. Editors. Research on Soil Erosion, InTech, 2012, 65-88Google Scholar

  • Maikhuri R.K., Rao K.S., Patnaik S., Saxena K.G., Ramakrishnan P.S., Assessment of vulnerability of forests, meadows and mountain ecosystems due to climate change, ENVIS Bulletin: Himalayan Ecology, 2003, 11(2), 1-9Google Scholar

  • Mateus P., Fernandes P.M., Forest Fires in Portugal: Dynamics, Causes and Policies. In: Reboredo, F. Forest Context and Policies in Portugal, Present and Future Challenges, World Forests, 19. Springer, 2014, 219-236Google Scholar

  • Mayor A.G., Bautista S., Llovet J., Bellot J., Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics, Catena, 2007, 71, 68-75CrossrefGoogle Scholar

  • Moody J.A., Martin D.A., Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range, Earth Surface Processes and Landforms, 2001, 26, 1049-1070CrossrefGoogle Scholar

  • Moody J.A., Shakesby R.A., Robichaud P.R., et al., Current research issues related to post-wildfire runoff and erosion processes, Earth-Science Reviews, 2013, 122, 10-37Google Scholar

  • Moreira F., Ferreira P.G., Rego F.C., Bunting S., Landscape changes and breeding bird assemblages in northwestern Portugal: the role of fire, Landscape Ecology, 2001, 16(2), 175-187CrossrefGoogle Scholar

  • Moreira F., Vaz P., Catry F., Silva J.S., Regional variations in wildfire preference for land cover types in Portugal: implications for landscape management to minimise fire hazard, Int. J. Wildland Fire, 2009, 18, 563-574CrossrefGoogle Scholar

  • Moreira F., Viedma O., Arianoutsou M., Curt T., Koutsias N., Rigolot et al., Landscape e wildfire interactions in southern Europe: implications for landscape management, Journal of Environmental Management, 2011, 92, 2389-2402Google Scholar

  • Moreno J.M., Spatial distribution of forest fires in Sierra de Gredos (central Spain), Forest Ecology Management, 2001, 147, 55-65Google Scholar

  • Mourào P.R., Martinho V.D., Discussing structural breaks in the portuguese regulation on forest fires-an economic approach, Land Use Policy, 2016, 54, 460-478CrossrefGoogle Scholar

  • Natividade J.V., Subericultura, DGSFA, Lisboa, 1950Google Scholar

  • Nunes A., Lourenco L., Processos hidrogeomorfologicos intensos na sequencia de incendios florestais em Portugal: analise de estudos de caso, In: Bento Goncalves A, Vieira A., Editors, Grandes incendios florestais, erosao, degradacao e medidas de recuperacao dos solos, 2013, 161-179Google Scholar

  • Nunes A., Lourenco L., Meira A.C., Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014), Science of the Total Environment, 2016, 573, 1190-1202Google Scholar

  • Nunes A.N., Regional variability and driving forces behind forest fires in Portugal: an overview of the last three decades (1980-2009), Appl Geogr, 2012, 34, 576-86Google Scholar

  • Nunes M.C.S., Vasconcelos M.J., Pereiram J.M.C., Dasgupta N., Alldredge R.J., Rego F.C., Land cover type and fire in Portugal: do fires burn land cover selectively?, Landscape Ecol, 2005, 20, 661-673CrossrefGoogle Scholar

  • Nyman P., Sheridan G.J., Lane P.N., Hydro-geomorphic response models for burned areas and their applications in land management, Progress in Physical Geography, 2013, 37(6), 787-812CrossrefGoogle Scholar

  • Oliveira S., Oehler F., San-Miguel-Ayanz J., Camia A., Pereira J.M.C., Modelling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest, Forest Ecol Manag., 2012, 275, 117-129Google Scholar

  • Oliveira S., Pereira J.M.C., San-Miguel-Ayanz J., Lourenco L., Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression, Appl Geogr, 2014, 51, 143-157Google Scholar

  • Oliveira S.L.J., Pereira J.M.C., Carreiras J.M.B., Fire frequency analysis in Portugal (1975-2005), using Landsat-based burnt area maps, Int. J. Wildland Fire, 2011, 21(1), 48-60Google Scholar

  • Oliveira, S.L.J. Analise da frequencia do fogo em Portugal Continental (1975-2005) com a distribuicao de Weibull. Tese de mestrado, ISA, UTL, Lisboa, Portugal, 2008Google Scholar

  • Sebastián-López A., Salvador-Civil R., Gonzalo-Jimenez J., San Miguel-Ayanz, J., Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe, European J. Forest Res., 2008, 127,149-163Google Scholar

  • Shakesby R., Doerr S., Wildfire as a hydrological and geomorphological agent, Earth-Science Reviews, 2006, 74, 269-307Google Scholar

  • Shakesby R.A., Post-wildfire soil erosion in the Mediterranean: Review and future research directions, Earth-Science Reviews, 2011,105, 71-100CrossrefGoogle Scholar

  • Soulis K.X., Dercas N., Valiantzas J.D., Wildfires impact on hydrological response - the case of Lykorrema experimental watershed, Global NEST Journal, 2012, 14(3), 303-310Google Scholar

  • Stoof C.R., Vervoort R.W., Iwema J., Elsen E., Ferreira A.J.D., Ritsema C.J., Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 2012, 16, 267-285CrossrefGoogle Scholar

  • Tedim F., Remelgado R., Borges C., Carvalho S., Martins J., Exploring the occurrence of mega-fires in Portugal, For. Ecol. Manage., 2013, 294, 86-96Google Scholar

  • UNISDR, Terminology on disaster risk reduction, United Nations International Strategy for Disaster reduction, Geneva, Switzerland, 2009Google Scholar

About the article

Received: 2016-12-11

Accepted: 2017-02-15

Published Online: 2017-03-01

Published in Print: 2017-02-01

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 70–82, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0008.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marcelo Fragoso, Maria da Graça Carraça, and Maria João Alcoforado
International Journal of Climatology, 2018
Cecília Sérgio, César A. Garcia, Sarah Stow, Anabela Martins, Cristiana Vieira, Helena Hespanhol, and Manuela Sim-Sim
Cryptogamie, Bryologie, 2018, Volume 39, Number 2, Page 283

Comments (0)

Please log in or register to comment.
Log in