Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Advanced Life Support Research and Technology Transfer at the University of Guelph

M. Dixon / M. Stasiak / T. Rondeau / T. Graham
Published Online: 2017-04-13 | DOI: https://doi.org/10.1515/opag-2017-0013

Abstract

Research and technology developments surrounding Advanced Life-Support (ALS) began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA) program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED) lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

Keywords: terrestrial technology transfer; Canada; advanced Life-support; bio-regenerative life-support

References

  • Bamsey M., Graham T., Thompson C., Berinstain A., Scott A., Dixon M., Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors 12, 2012, 13349-13392, doi: 10.3390/s121013349Web of ScienceCrossrefGoogle Scholar

  • Chamberlain C.P., Stasiak M.A., Dixon, M.A., Response of plant water status to reduced atmospheric pressure. Presented at the SAE Technical Paper Series, SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2003, pp. 2003-01-2677 doi: 10.4271/2003-01-2677CrossrefGoogle Scholar

  • Darlington A., Dixon M.A., Pilger C., The use of biofilters to improve indoor air quality: the removal of toluene, TCE, and formaldehyde. Life Support Biosphere Science, 1998, 5, 63-69Google Scholar

  • Darlington A.B., Dat J.F., Dixon M.A., The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol, 2001, 35, 240-246, doi: 10.1021/es0010507CrossrefGoogle Scholar

  • Dixon M.A., Grodzinski B., Cote R., Stasiak M., Sealed environment chamber for canopy light interception and trace hydrocarbon analyses. Advances in Space Research, 1999, 24, 271- 280CrossrefGoogle Scholar

  • Godia F., Albiol J., Montesinos J.L., Pérez J., Creus N., Cabello F., Mengual X., Montras A., Lasseur C., MELISSA: a loop of interconnected bioreactors to develop life support in space. J. Biotechnol., 2002, 99, 319-330Google Scholar

  • Graham T., Zhang P., Dixon M.A., Closing in on upper limits for root zone aqueous ozone application in mineral wool hydroponic tomato culture. Scientia Horticulturae, 2012, 143, 151-156Web of ScienceGoogle Scholar

  • Graham T., Zhang P., Woyzbun E., Dixon M., Response of hydroponic tomato to daily applications of aqueous ozone via drip irrigation. Scientia Horticulturae, 2011, 129, 464-471Web of ScienceGoogle Scholar

  • Graham T., Zhang P., Zheng Y., Dixon M.A., Phytotoxicity of aqueous ozone on five container-grown nursery species. Hortscience, 2009, 44, 774-780Google Scholar

  • Levinskikh M.A., Sychev V.N., Derendyaeva T.A., Signalova O.B., Salisbury F.B., Campbell W.F., Bingham G.E., Bubenheim D.L., Jahns G., Analysis of the spaceflight effects on growth and development of super dwarf wheat grown on the space station mir. Journal of Plant Physiology, 2000, 156, 522-529Google Scholar

  • Li L., Stasiak M., Li L., Xie B., Fu Y., Gidzinski D., Dixon M., Rearing tenebrio molitor in blss: dietary fiber affects larval growth, development, and respiration characteristics. Acta Astronautica, 2016, 118, 130-136Web of ScienceGoogle Scholar

  • MacIntyre O.J., Trevors J.T., Dixon M.A., Cottenie K., Application of plant growth promoting rhizobacteria in a hydroponics system for advanced life support in space. Acta Horticulturae, 2011, 1285-1292CrossrefGoogle Scholar

  • Maclean H., Dochain D., Waters G., Stasiak M., A model development approach to ensure identifiability of a simple mass balance model for photosynthesis and respiration in a plant growth chamber. Ecological Modeling, 2012, 246, 105-118Google Scholar

  • Morrow R., Rondeau Vuk T., Dixon M., Tomatosphere - Mission to Mars. An evaluation of a space science outreach program. AIAA 2010 6209, 40th International Conference on Environmental Systems. July 11-15, 2010. Barcelona, SpainGoogle Scholar

  • Munz G., Dixon M., Darlington A., The removal of carbon monoxide by botanical systems. SAE Technical Paper Series 1, 2002-01-2265, doi: 10.4271/2002-01-2265CrossrefGoogle Scholar

  • Nardone E., Kevan P.G., Stasiak M., Dixon M., Atmospheric pressure requirements of bumblebees (Bombus impatiens) as pollinators of lunar or Martian greenhouse grown food. Gravitational and Space Biology, 2012, 26(2), 13- 21Google Scholar

  • Ontario P.O., Clean Water Act, 2006, S.O. 2006, c. 22, e-laws.gov. on.caGoogle Scholar

  • Ontario P.O., Nutrient Management Act, 2002, S.O. 2002, c. 4, Affirmed. Ed., e-laws.gov.on.caGoogle Scholar

  • Ontario P.O., Ontario Water Resources Act, R.S.O. 1990, c. O.40, e-laws.gov.on.ca Paradiso R., Buonomo R., Dixon M.A., Barbieri G., Soybean cultivation for bioregenerative life support systems (BLSSS): the effect of hydroponic system and nitrogen source. Advances in Space Research, 2014, 53, 574-584Google Scholar

  • Robinson S., Graham T., Dixon M.A., Zheng Y., Aqueous ozone can extend vase-life in cut roses, J. Hortic. Sci. Biotech, 2009, 84, 97-101Google Scholar

  • Stasiak M., Cote R., Dixon M., Grodzinski B., Increasing plant productivity in closed environments with inner canopy illumination. Life Support Biosphere Science, 1998, 5, 175-181Google Scholar

  • Stasiak M., Gidzinski D., Jordan M., Dixon M., Crop selection for advanced life support systems in the ESA Melissa program: durum wheat (Triticum turgidum var durum), Advances in Space Research, 2012, 49, 1684-1690Google Scholar

  • Stasiak M., Waters G., Zheng Y., Grodzinski B., Dixon M., Integrated multicropping of beet and lettuce and its effect on atmospheric stability. Presented at The International Conference on Environmental Systems, SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2003, pp. 2003-01-2357, doi: 10.4271/2003-01-2357CrossrefGoogle Scholar

  • Thompson C.G., Ion-Selective Analysis of Water Quality in The Contexts of Plant Production, Biological Life Support Systems and Space Exploration. PhD Thesis University of Guelph, 2015Google Scholar

  • Waters G., Gidzinski D., Zheng Y., Dixon M., Empirical relationships between light intensity and crop net carbon exchange rate at the leaf and full canopy scale: towards integration of a higher plant chamber in MELiSSA. Presented at the International Conference on Environmental Systems, SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2005, pp. 2005-01-3071, doi: 10.4271/2005-01-3071CrossrefGoogle Scholar

  • Wehkamp C.A., Stasiak M., Lawson J., Yorio N., Stutte G., Richards J., Wheeler R., Dixon M., Radish (Raphanus Sativa L. Cv. Cherry Bomb II) growth, net carbon exchange rate, and transpiration at decreased atmospheric pressure and / or oxygen. Gravitational and Space Biology, 2012, 26, 3-16Google Scholar

  • Wehkamp C., Stasiak M., Dixon M., Response of radish to light and oxygen at reduced atmospheric pressure. Presented at the 41st International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2012, doi: 10.2514/6.2011-5169CrossrefGoogle Scholar

  • Wheeler R.M., Wehkamp C.A., Stasiak M.A., Dixon M.A., Rygalov V.Y., Plants survive rapid decompression: implications for bioregenerative life support. Advances in Space Research, 2011, 47, 1600-1607Google Scholar

About the article

Received: 2017-01-17

Accepted: 2017-03-13

Published Online: 2017-04-13

Published in Print: 2017-02-01


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 139–147, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0013.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in