Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Genotype Stability Index for Root Yield and Tolerance to Sweetpotato Weevil Cylas puncticolis: A Tool for Identifying Climate Smart Varieties

A. Chalwe
  • Zambia Agriculture Research Institute, Copperbelt Research Station, Private Bag 8, Mufulira, Zambia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Chiona / S. Sichilima
  • Corresponding author
  • Zambia Meteorological Department, Kafironda Meteorological Station, P.O Box 70474, Ndola, Zambia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Njovu / C. Chama
  • Zambia Agriculture Research Institute, Copperbelt Research Station, Private Bag 8, Mufulira, Zambia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Ndhlovu
  • Zambia Agriculture Research Institute, Copperbelt Research Station, Private Bag 8, Mufulira, Zambia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-05 | DOI: https://doi.org/10.1515/opag-2017-0017


Despite the ability of sweetpotato to grow in marginal areas, large differential genotypic responses have been reported under varying environmental conditions. Differences in pest and disease pressure contribute significantly to inconsistencies in performance of genotypes in various environments. Using a randomized complete block design, eight sweetpotato genotypes were evaluated in one location successively for five years (seasons) (2010-2015). Additive main effects and multiplicative interaction (AMMI) stability value (ASV) was used to identify best genotypes that combine stability with high resistance to sweetpotato weevil Cylas puncticolis and root yield across the five seasons (years). Stability of genotypes for weevil infestation and damage thereof, and fresh storage root yield were determined for each season. The data on each of these parameters were correlated with rainfall and temperature data for each and across five seasons. Results show variability in the ranking of genotypes’ stability for resistance to weevil infestation and associated damage. Significant negative correlation was recorded between total rainfall and sweetpotato weevil damage. However, AMMI analysis of variance indicates genotype main effects, environmental main effects and the interaction thereof were all significant for root yield and weevil damage. Genotype selection index assisted to identify at least three genotypes namely Kokota, Lunga, and Kalungwishi which combined stability for high root yield and tolerance to weevil damage.

Keywords : Genotype stability Index; Cylas puncticolis; Resistance; Climate smart


  • Aina O.O., Dixon A.G.O., Akinrinde E.A., Additive main effects and multiplicative interaction (AMMI) analysis for yield of cassava in Nigeria. Journal of Biological Sciences, 2007, 7, 796-800Google Scholar

  • Alghamdi S.S., Yield stability of some soybean genotypes across diverse environment. Pakistan Journal Biological Sciences, 2004, 7(12), 2109-2114Google Scholar

  • Benesi I.R.M., Labuschagne M.T., Dixon A.G.O., Mahungu N.M., Genotype x environment interaction effects on native cassava starch quality and potential for starch use in the commercial sector. African Crop Science Journal, 2004, 12, 205-216Google Scholar

  • Bokanga M., Ekanayake I.J., Dixon A.G.O., Porto M.C.M., Genotype- environment interactions for cyanogenic potential in cassava. Acta Horticulturae,1994, 375,131-139Google Scholar

  • Comstock R.E., Moll R.H., Genotype-environment interactions. In W.D. Hanson and H.F. Robinson (ed.) Statistical genetics and plant breeding. National Academy of Sciences-National Research Council Publ. 982. NAS-NRC, Washington, DC., 1963, 164-196Google Scholar

  • Crossa J., Statistical analysis of multiplication trails. Advances in Agronomy, 1990, 4, 55-83CrossrefGoogle Scholar

  • Crossa J., Cornelius P.L., Yan W., Biplots of linear-bilinear models for studying crossover genotype x environment interaction. Crop Science, 2002, 42, 619-633CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Genotype x environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Science, 2016a, 56, 1645-1661, doi: 10.2135/cropsci2015.10.0625CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Arellano C., Analysis of genotype x environment interaction (GxE) using SAS programming. Agronomy Journal, 2016b, 108 (5), 1-15, doi: 10.2134/agronj2016.02.0085CrossrefGoogle Scholar

  • Dixon A.G.O., Ngeve J.M., Nukenine E.N., Genotype x environment effects on severity of cassava bacterial blight disease caused by Xanthomonasaxonopodis. Pv. Manihotis. European Journal of Plant Pathology, 2002, 108, 763-770Google Scholar

  • Dixon A.G.O., Nukenine E.N., Genotype x environment interaction and optimum resource allocation for yield and yield components of cassava. African Crop Science Journal, 2000, 8, 1-10Google Scholar

  • El-Sharkawy M.A., Drought-tolerant cassava for Africa, Asia and Latin America. Bioscience, 1993, 43, 441-451CrossrefGoogle Scholar

  • El-Sharkawy M.A., Cassava biology and physiology. Plant Molecular Biology, 2003, 53, 621-641Google Scholar

  • El-Sharkawy M.A., Hernandez A.D.P., and Hershey C., Yield stability of cassava during prolonged mid-season water stress. Experimental Agriculture, 1992, 28, 165-174CrossrefGoogle Scholar

  • Eberhart S.A., Russell W.A., Stability parameters for comparing varieties. Crop Science, 1966, 6, 36-40Google Scholar

  • Fikere M., Fikiru E., Tadesse T., Legesse T., Parametric stability analysis in field peas (Pisum sativum L.) under South Eastern Ethiopian condition. World Journal of Agricultural Sciences, 2009, 5, 146-151Google Scholar

  • Farshadfar E., Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences, 2008, 11, 1791-1796Google Scholar

  • Farshadfar E., Mahamodi N., Yaghotipoor A., AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticumaestivum L.). Australian Journal of Crop Science, 2012, 5, 1837-1844Google Scholar

  • Francis T.R., Kannenberg L.W., Yield stability in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 1978, 58, 1029-034Google Scholar

  • Gauch H.G., Statistical analysis of yield trials by AMMI and GGE. Crop Science , 2006, 46, 1488-1500Web of ScienceCrossrefGoogle Scholar

  • Gauch H.G., Zobel R.N., AMMI analysis of yield trials, In M.S.Kang and H.G. Gauch (eds) genotype by environment interaction. CPC Press, USA.P., 1996, 85-122Google Scholar

  • Gauch H.G., Zobel R.W., Identifying mega-environments and targeting genotypes. Crop Science, 1997, 37, 311-326Google Scholar

  • Hartley H.O., The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika, 1950, 37, 308-312Google Scholar

  • Kumar R., Dia M., Wehner T.C., Implications of mating behavior in watermelon breeding. Hort. Science, 2013, 48(8), 960-964Google Scholar

  • Lin C.S., Binns M.R., A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 1988, 68, 193-198Google Scholar

  • Mkumbira J., Mahungu N.M., Gullberg U., Grouping locations for efficient cassava evaluation in Malawi. Experimental Agriculture, 2003, 39, 167-179Google Scholar

  • Ngeve J.M., Yield stability parameters for comparing cassava varieties, In F. Ofori and S.K. Hahn (eds).Tropical root crops in developing economy, Accra, Ghana. P., 1994, 138-145Google Scholar

  • Payne R.W., Murray D.A., Harding S.A., Baird D.B., Soutar D.M., An introduction to Genstat for windows (14th edition). VSN international, Hemel Hempstead, UK, 2011Google Scholar

  • Perkins J.M., Jinks J.D., Environmental and genotype-environmental components of variability. III. Multiple lines and crosses. Heredity, 1968, 23, 339-356CrossrefGoogle Scholar

  • Purchase J.L., Hatting H., Van Deventer S.C., Genotype x environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 2000, 17, 101-107CrossrefGoogle Scholar

  • Shukla G.K., Some statistical aspects of partitioning genotypeenvironmental components of variability. Heredity, 1972, 29, 237-245CrossrefGoogle Scholar

  • Singh D, Guaf J., Okpul T., Wiles G., Hunter D., Taro (Colocasia esculenta) variety release recommendations for Papua New Guinea based on multi-location trials. New Zealand Journal of Crop and Horticultural Science, 2006, 34, 163-171CrossrefGoogle Scholar

  • Singh R.P., Huerta-Espino J., Sharma R., Joshi A.K., Trethowan R., High yielding spring bread wheat germ plasm for global irrigated and rainfed production systems. Euphytica , 2007, 157, 351-363Google Scholar

  • Ssemakula G., Dixon A.G.O., Genotype x environment interaction, stability and agronomic performance of carotenoid-rich cassava clones. Scientific Research and Essay, 2007, 2, 390-399Google Scholar

  • Wricke G., ÜbereineMethodezürErfassung der Okologischen- Streubreite in Feldresuchen. Z. Pflanzenzuchtg, 1962, 47, 92-96Google Scholar

  • Zhang Y., He Z., Zhang A., Van Ginkel M., Ye G., Pattern analysis on grain yield of Chinese and CIMMYT spring wheat cultivars grown in China and CIMMYT. Euphytica, 2006, 147, 409-420Google Scholar

About the article

Received: 2017-02-02

Accepted: 2017-03-13

Published Online: 2017-04-05

Published in Print: 2017-02-01

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 166–174, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0017.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in