Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Food waste valorization options: opportunities from the bioeconomy

Enrica Imbert
Published Online: 2017-04-13 | DOI: https://doi.org/10.1515/opag-2017-0020

Abstract

The world is confronted with the depletion of natural resources due to their unsustainable use, increased global competiveness, increasing population and other environmental and economic challenges. Under the European 2020 growth strategy launched in 2010, Europe has set itself the goal of shifting from linear to circular models of production and consumption. In this context, food waste management poses a great challenge. This study focusses on the possible destinations for food waste, specifically, on the most sustainable practices that turn waste into valuable resources. Particular attention is devoted to the potential offered by fast-growing sectors such as the bioeconomy, which is contributing to increased energy and materials production with reduced environmental impact, at the same time creating new job opportunities. In this paper we will argue that an holistic approach considering the issue of food wastage as part of a broader emerging bio-economy and circular-economic model, might provide win-win solutions able to minimize wastage, promote income growth and job creation, and prompt sustainable local development. However, in order to enable an effective transition to a circular bioeconomy able to minimize the impact of food wastage, the economic, social, and environmental sustainability of this new model must be properly evaluated through appropriate tools, e.g. through an overall Life Cycle Sustainability Assessment (LCSA).

Keywords: food waste; food waste valorization practices; secondary biomass; bioeconomy

References

  • Adhikari B.K., Barrington S., Martinez J., Predicted growth of world urban food waste and methane production. Waste Management & Research, 2006, 24(5), 421-433CrossrefGoogle Scholar

  • Bernstad A., La Cour Jansen J., Review of comparative LCAs of food waste management systems - current status and potential improvements. Waste Management, 2012, 32(12), 2439Google Scholar

  • BIS, Building a high value bioeconomy: opportunities from waste, 2015, retrieved from https://www.gov.uk/government/publications/supporting-growth-of-the-UK-bioeconomyopportunities-from-wasteGoogle Scholar

  • Bourguignon D., Bioeconomy Challenges and opportunities, Briefing, EPRS, 2017Google Scholar

  • Bräutigam K.R., Jörissen J., Priefer C., The extent of food waste generation across EU-27: different calculation methods and the reliability of their results. Waste Management & Research, 2014, 32(8), 683-694Google Scholar

  • Buzby J.C., Hyman J., Total and per capita value of food loss in the United States. Food Policy, 2012, 37(5), 561-570CrossrefGoogle Scholar

  • Corrado S., Ardente F., Sala S., Saouter E., Modelling of food loss within life cycle assessment: From current practice towards a systematisation. Journal of Cleaner Production, 2017, 140, 847-859Google Scholar

  • de Besi M., McCormick K., Towards a Bioeconomy in Europe: National, Regional and Industrial Strategies. Sustainability, 2015, 7(8), 10461-10478, retrieved from http://www.mdpi.com/2071-1050/7/8/10461/htmGoogle Scholar

  • de Jong E., Jungmeier G., Biorefinery concepts in comparison to petrochemical refineries. In: Ashok P., Rainer H., Christian L., Mohammad T., Madhavan N. (Eds), Industrial Biorefineries & White Biotechnology. Elsevier, Waltham, USA, 2015, 3-33Google Scholar

  • EC 2010, Being wise with waste: the EU’s approach to waste management, Luxembourg: Publications Office of the European Union, 2010, retrieved at: http://ec.europa.eu/environment/waste/pdf/WASTE%20BROCHURE.pdfGoogle Scholar

  • EC 2012, Bioeconomy Strategy, “Innovating for Sustainable Growth: A Bioeconomy for Europe”, COM(2012) 60 Final, Brussels, 2012Google Scholar

  • EC 2014, State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU, COMMISSION STAFF WORKING DOCUMENT, Brussels, 2014, 28.7.2014 SWD(2014) 259 finalGoogle Scholar

  • EC 2015, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Directive 2008/98/EC on waste, COM/2015/0595 finalGoogle Scholar

  • EC 2015, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Directive 94/62/EC on packaging and packaging waste, COM/2015/0596 finalGoogle Scholar

  • EC 2015, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Directive 1999/31/EC on the landfill of waste, COM/2015/0594 finalGoogle Scholar

  • EC 2017, Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, on the implementation of the Circular Economy Action Plan, 2017, retrieved at: http://ec.europa.eu/environment/circular-economy/implementation_report.pdfGoogle Scholar

  • EPA 2014, Food waste management scoping study, 2014, retrieved at https://www.epa.gov/sites/production/files/2016-01/documents/msw_task11-2_foodwastemanagementscopingstudy_508_fnl_2.pdfGoogle Scholar

  • EPA 2016, Advancing Sustainable Materials Management: 2014 Fact Sheet, Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United State, 2016, retrieved at https://www.epa.gov/sites/production/files/2016-11/documents/2014_smmfactsheet_508.pdfGoogle Scholar

  • Eriksson M., Strid I., Hansson,P.A., Carbon footprint of food waste management options in the waste hierarchy-a Swedish case study. Journal of Cleaner Production, 2015, 93, 115-125Google Scholar

  • Evangelisti S., Lettieri P., Borello D., Clift R., Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Management, 2014, 34(1), 226-237CrossrefGoogle Scholar

  • Falcone P.M. Imbert E., Bringing a Sharing Economy Approach into the Food Sector: The Potential of Food Sharing for Reducing Food Waste, Springer, 2017CrossrefGoogle Scholar

  • Imbert E., Ladu L., Morone P., Quitzow R., Policy strategies for a transition to a bio-based economy in Europe: the case of Italy and Germany, 2017Google Scholar

  • FAO, Food Wastage Footprint: Impacts on Natural Resources, Summary Report, 2013Google Scholar

  • FAO, Definitional Framework of Food Loss. Working paper of the Global Initiative on Food Loss and Waste Reduction. Rome, Italy: FAO, 2014Google Scholar

  • Ferrari M.Z., The Risks and Opportunities of the Sharing Economy: Beyond Uncertainties in the Sharing Economy: Opportunities for Social Capital. European Journal of Risk Regulation, 2016, 7(4), 664-674Google Scholar

  • Foley J.A., Ramankutty No., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O’Connell C., Ray D.K., West P.C., Balzer C., Solutions for a cultivated planet. Nature, 2011, 478(7369), 337-342Google Scholar

  • FUSIONS, Fusions definitional framework for food waste, 2014, retrieved at: http://www.eu-fusions.org/phocadownload/Publications/FUSIONS%20Definitional%20Framework%20for%20Food%20Waste%202014.pdfGoogle Scholar

  • FUSIONS, Estimates of European food waste levels, 2016, retrieved at: http://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdfGoogle Scholar

  • FUSIONS, Food waste quantification manual to monitor food waste amounts and progression, 2016, retrieved at: http://www.eufusions.org/phocadownload/Publications/Food%20waste%20quantification%20manual%20to%20monitor%20food%20waste%20amounts%20and%20progression.pdfGoogle Scholar

  • Galgano F., Condelli N., Favati F., Di Bianco V., Perretti G., Caruso M.C., Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Italian Journal of Food Science, 2015, 27(1), 1-20Google Scholar

  • Gallagher and P. V. Mahajan, The stability and shelf life of fruit and vegetables In: Food and Beverage Stability and Shelf-Life. Cambridge, UK: Woodhead Publishing Ltd., 2016Google Scholar

  • Garnett T., Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy, 2011, 36, S23-S32Google Scholar

  • Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C., Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967), 812-818Google Scholar

  • Graham-Rowe E., Donna C., Jessop D.C., Sparks P. Identifying motivations and barriers to minimising household food waste. Resources. Conservation and Recycling, 2014, 84, 15-23CrossrefGoogle Scholar

  • Grosso M., Motta A., Rigamonti L., Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive. Waste Management, 2010, 30(7), 1238-1243CrossrefGoogle Scholar

  • Gustavsson J., Cederberg C., Sonesson U., van Otterdijk R., Meybeck A., Global food losses and food waste: extent, causes and prevention. Food and Agriculture Organisation of the United Nations (FAO), Rome, 2011Google Scholar

  • Hall K.D., Guo J., Dore M., Chow C.C., The Progressive Increase of Food Waste in America and Its Environmental Impact. PLoS one, 2009, 4(11), p. e7940Google Scholar

  • Hanson C., Lipinski B., Robertson K., Dias D., Gavilan I., Grévarath P., Ritter S., Fonseca J., Van Otterdijk R., Timmermans T., Lomax J., O’Connor C., Dawe A., Swannell R., Berger V., Reddy M., Somogyi D., Tran B., Leach B., Quested T., Food Loss and Waste Accounting and Reporting Standard. WRI, Nestlé, CGF, FAO, EU-funded FUSIONS project, UNEP, WRAP, WBCSD, NRI. URL, 2016, retrieved at: http://www.wri.org/sites/default/files/REP_FLW_Standard.pdfGoogle Scholar

  • Hultman J., Corvellec H., The European Waste Hierarchy: from the sociomateriality of waste to a politics of consumption. Environment and Planning, A, 2012, 44(10), 2413-2427Google Scholar

  • Imbert E., Ladu L., Morone P., Quitzow R., Policy strategies for a transition to a bio-based economy in Europe: the case of Italy and Germany. Mimeo, 2017Google Scholar

  • Katajajuuri J.-M., Silvennoinen K., Hartikainen H., Heikkilä L., Reinikainen A., Food waste in the Finnish food chain. Journal of Cleaner Production, 2014, 73, 322-329Google Scholar

  • Koivupuro H.-K., Hartikainen H., Silvennoinen K., Katajajuuri J.-M., Heikintalo N., Reinikainen A., Jalkanen L., Influence of socio-demographical, behavioural and attitudinal factors on the amount of avoidable food waste generated in Finnish households. International Journal of Consumer Studies, 2012, 36(2), 183-191Google Scholar

  • Kretschmer B., Smith C., Watkins E., Allen B., Buckwell A., Desbarats J., Kieve D., Technology options for recycling agricultural, forestry and food wastes and residues for sustainable bioenergy and biomaterials. Report for the European Parliament, STOA, as part of the study Technology Options for Feeding 10 Billion People, IEEP: London, 2013Google Scholar

  • Kummu M., de Moel H., Porkka M., Siebert S., Varis O., Ward P.J., Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use, Science of the Total Environment, 2012, 438, 477-489Google Scholar

  • Lazell J., Consumer food waste behaviour in universities: Sharing as a means of prevention, Journal of Consumer Behaviour, 2016, 15, 430-439Google Scholar

  • Lin C.S.K., Pfaltzgraff L.A., Herrero-Davila L., Mubofu E.B., Abderrahim S., Clark J.H., Koutinas A.A., Kopsahelis N., Stamatelatou K., Dickson F., Thankappan S., Mohamed Z., Brocklesby R., Luque R., Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 2013, 6(2), 426-464CrossrefGoogle Scholar

  • Lin J., Zuo J. Gan L., Li P., Liu F., Wang K., Chen L., Gan H., Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. Journal of Environmental Sciences, 2011, 23(8), 1403-1408Google Scholar

  • Lundqvist J., de Fraiture C., Molden D., Saving water: from field to fork: curbing losses and wastage in the food chain. In SIWI Policy Brief. Stockholm, Sweden: SIWI, 2008Google Scholar

  • Lyndhurst B., Food behaviour consumer research-findings from the quantitative survey. Briefing Paper UK: WRAP, 2007Google Scholar

  • Manfredi S., Cristobal Garcia J., de Matos C.T., Giavini M., Vasta A., Sala S., Saouter E., Tuomisto H.L., Improving Sustainability and Circularity of European Food Waste Management with a Life Cycle Approach, Publications Office of the European Union, 2015Google Scholar

  • Mirabella N., Castellani V., Sala S., Current options for the valorization of food manufacturing waste: a review, Journal of Cleaner Production, 2014, 65, 28-41CrossrefGoogle Scholar

  • Mitchell P., James K., Economic Growth Potential of More Circular Economies, WRAP, Banbury, 2015Google Scholar

  • Morone P., Falcone P.M., Imbert E., Morone M., Morone A., Tackling food waste through a sharing economy approach: an experimental analysis, Framed Field Experiments 00414, The Field Experiments Website, 2016Google Scholar

  • Notarnicola B., Sala S., Anton A., McLaren S.J., Saouter E., Sonesson U., The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. Journal of Cleaner Production, 2017, 140(2), 399-409Google Scholar

  • OECD, Biobased Chemicals and Bioplastics: Finding the Right Policy Balance, OECD Science, Technology and Industry Policy Papers, No. 17, OECD Publishing, Paris, 2014Google Scholar

  • Philp J.C., Biobased Chemicals and Bioplastics: Finding the Right Policy Balance. Industrial Biotechnology, 2014, 10(6), 379-383Google Scholar

  • Papargyropoulou E., Lozano R., Steinberger J.K., Wright N., bin Ujang Z., The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production, 2014, 76, 106-115Google Scholar

  • Parfitt J., Barthel M., Macnaughton S., 2Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554), 3065-3081Google Scholar

  • Pfaltzgraff L.A., Cooper E.C., Budarin V., Clark J.H., Food waste biomass: a resource for high-value chemicals. Green Chemistry, 2013, 15(2), 307-314CrossrefGoogle Scholar

  • Quested T.E., Ingle R., Parry A.D., Household Food and Drink Waste in the UK 2012, WRAP, 2013, http://www.wrap.org.uk/sites/files/wrap/hhfdw-2012-main.pdf.pdfGoogle Scholar

  • Quitzow R., Assessing policy strategies for the promotion of environmental technologies: A review of India’s National Solar Mission. Reseach Policy in press, 2015Google Scholar

  • Rasmussen C., Vigsø D., Ackerman F., Porter R., Pearce D., Dijkgraaf E., Herman Vollebergh, Rethinking the Waste Hierarchy. Environmental Assessment Institute, Copenhagen, 2005Google Scholar

  • Ronzon T., Santini F., M’Barek R., The Bioeconomy in the European Union in numbers. Facts and figures on biomass, turnover and employment. European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Spain, 2015, p.4Google Scholar

  • Salemdeeb R., zu Ermgassen E.K., Kim M.H., Balmford A., Al-Tabbaa A., Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production, 2017, 140(2), 871-880Google Scholar

  • Scarlat N., Dallemand J.F., Monforti-Ferrario F., Nita V., The role of biomass and bioenergy in the future bioeconomy: Policies and facts. Environmental Development, 2015, 15, 3-34Google Scholar

  • Secondi L., Principato L., Laureti T., Household food waste behaviour in EU-27 countries: a multilevel analysis. Food Policy, 2015, 56, 25-40Google Scholar

  • Stuart T., Waste: Uncovering the Global Food Scandal, Penguin Books, 2009Google Scholar

  • United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. ESA/P/WP.241, 2015, retrieved at: https://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdfGoogle Scholar

  • Van Ewijk S., Stegemann J.A., Limitations of the waste hierarchy for achieving absolute reductions in material throughput, Journal of Cleaner Production, 2016, 132, 122-128Google Scholar

  • Vandermeersch T., Alvarengaa R.A.F., Ragaert P., Dewulf J., Environmental sustainability assessment of food waste valorization options, Resources. Conservation and Recycling, 2014, 87, 57-64CrossrefGoogle Scholar

  • Vanham D., Bouraoui F., Leip A., Grizzetti B., Bidoglio G., Lost water and nitrogen resources due to EU consumer food waste. Environmental Research Letters, 2015, 10(8), p.084008Google Scholar

  • Venkat K., The climate change and economic impacts of food waste in the United States. International Journal on Food System Dynamics, 2011, 2(4), 431-446Google Scholar

  • Veugelers R., Which policy instruments to induce clean innovating? Re- search Policy, 2012, 41(10), 1770-1778Google Scholar

  • Westhoek H., Lesschen J.P., Rood T., Wagner S., De Marco A., Murphy-Bokern D., Leip A., van Grinsven H., Sutton M.A., Oenema O., Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change, 2014, 26, 196-205Google Scholar

  • WRAP, The food we waste. Banbury, UK, 2008Google Scholar

  • WRAP, Strategies to achieve economic and environmental gains by reducing food waste. Banbury, 2015, retrieved at: http://www.wrap.org.uk/sites/files/wrap/Strategies%20to%20achieve%20economic%20and%20environmental%20gains%20(1).pdfGoogle Scholar

  • WRAP, Estimates of Food Surplus and Waste Arising in the UK, 2017, retrieved at: http://www.wrap.org.uk/sites/files/wrap/Estimates_%20in_the_UK_Jan17.pdfGoogle Scholar

  • Yolin C., Waste Management and Recycling in Japan, Opportunities for European Companies (SMEs focus). EU-Japan Centre for Industrial Cooperation, 2015, retrieved at: http://cdnsite.eu-japan.eu/sites/default/files/publications/docs/waste_management_recycling_japan.pdfGoogle Scholar

  • Zhang C., Su H., Baeyens J., Tan T., Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 2014, 38, 383-392Google Scholar

  • Zhang R., El-Mashad H.M., Hartman K., Wang F., Liu G., Choate C., Gamble P., Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 2007, 98(4), 929-935CrossrefGoogle Scholar

About the article

Received: 2017-03-22

Accepted: 2017-03-29

Published Online: 2017-04-13

Published in Print: 2017-02-01


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 195–204, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0020.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Prasun Kumar, Kuppam Chandrasekhar, Archana Kumari, Ezhaveni Sathiyamoorthi, and Beom Kim
Energies, 2018, Volume 11, Number 2, Page 343

Comments (0)

Please log in or register to comment.
Log in