Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Abiotic stress tolerance of microorganisms associated with oregano (Origanum vulgare L.) in the Yaqui Valley, Sonora

Mariel García Meléndez
  • Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Geovanna Zárate Camargo
  • Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jenny Jocabet Meza Contreras
  • Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angélica Herrera Sepúlveda
  • Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio de los Santos Villalobos
  • CONACYT- Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón, Sonora, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fannie Isela Parra Cota
  • Corresponding author
  • Campo Experimental Norman E. Borlaug-CIRNO, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, CP 85000, Valle del Yaqui. Ciudad Obregón, Sonora, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-08 | DOI: https://doi.org/10.1515/opag-2017-0029

Abstract

The impact of agricultural activities on microbial communities and environmental parameters was evaluated in two different soil samples. One sample corresponded to soil designated to oregano cultivation and the other one to native soil, both located in the Yaqui Valley, Sonora. The objective of this study was to estimate the microbial diversity in both soil samples, evaluating isolates obtained under three stress conditions: temperature, salinity and pesticide resistance, as well as using metabolic tests to evaluate their potential capabilities as plant growth promoting bacteria. The bacterial population was 5.9×106 and 3.8×106 CFU/g dry soil, in the native and oregano-designated soil, respectively. A total of twenty-four bacteria and one actinobacterium were isolated. Native soil microorganisms presented higher values for fungicide tolerance and indoleacetic acid production; however, temperature stress, salinity resistance, siderophore production and phosphate solubilization were higher for microorganisms isolated from the agricultural soil. These results demonstrate the impact of land use on microbial communities and their potential eco-functional roles.

Keywords: Soil microbiology; land change; agriculture; temperature; salinity; fungicide

References

  • Ahrens T., Beman J., Harrison J., Jewett P., Matson P., A synthesis of nitrogen transformations and transfers from land to the sea in the Yaqui Valley agricultural region of northwest Mexico. Water Resources Research, 2008, 44, DOI: 10.1029/2007WR006661Web of ScienceCrossrefGoogle Scholar

  • Al-Najar H., Ashour E.K., The impact of climate change and soil salinity in irrigation water demand on the Gaza Strip. Journal of water and climate change, 2013, 4(2),118-130, DOI: 10.2166/wcc.2013.142Web of ScienceCrossrefGoogle Scholar

  • Bastos A.E.R., Moon D.H., Rossi A., Trevors J.T., Tsai S.M., Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Archives of microbiology, 2000, 174(5), 346-352, DOI: 10.1007/s002030000216CrossrefGoogle Scholar

  • Channabasava A., Lakshman H., Jorquera M., Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.), Journal of soil science and plant nutrition, 2015, 15(1), 35-45, DOI: 10.4067/S0718-95162015005000004CrossrefGoogle Scholar

  • Cherif-Silini H., Silini A., Yahiaoui B., Ouzari I., Boudabous A., Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Annals of Microbiology, 2016, 1-11, DOI: 10.1007/s13213-016-1194-6Web of ScienceCrossrefGoogle Scholar

  • Di Filippo M., Venier M., Filippini M., Vila H., Tolerancia a estrés salino de algunos portainjertos de vid combinados con la cv Malbec. Actas de las VI Jornadas de Riego y Fertirriego, Mendoza, Argentina, 2010, http://www.riegoyfertirriegocom/VIJARF_TrabajosCompletos/Di%20Filippo.pdfGoogle Scholar

  • Fernandez Northcote E., Proceedings of the International Workshop Complementing Resistance to Late Blight (Phytophthera Infestans) in the Andes, February 13-16, 2001, Cochabamba, Bolivia. International Potato Center, 2003Google Scholar

  • Ferraris G.N., Pergamino D.R.I., Muestreo y Análisis de Suelo: Punto de partida hacia un diagnóstico de fertilidad. Desarrollo Rural INTA, 2005Google Scholar

  • García de Salamone I.E., Microorganismos promotores del crecimiento vegetal. Informaciones Agronómicas de Hispanoamérica, 2012, 14, 12-16, DOI: 10.1016/j.ejsobi.2008.11.001CrossrefGoogle Scholar

  • García-Pérez E., Fernando Francisco C.-Á., Gutiérrez-Uribe J.A., García-Lara S., Revisión de la producción, composición fitoquímica y propiedades nutracéuticas del orégano mexicano. Revista mexicana de ciencias agrícolas, 2012, 3(2), 339-353Google Scholar

  • Harrison P., Agricultura mundial: hacia los años 2015/2030. Dirección de Información de la FAO, 2002Google Scholar

  • Hoben H., Somasegaran P., Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Applied and environmental microbiology, 1982, 44(5), 1246-1247Google Scholar

  • Lamz Piedra A., González Cepero M.C., La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales, 2013, 34(4), 31-42Google Scholar

  • Lara Mantilla C., Oviedo Zumaqué L.E., Betancur Hurtado C.A., Bacterias nativas con potencial en la producción de ácido indolacético para mejorar los pastos. Zootecnia Tropical, 2011, 29(2), 187-194Google Scholar

  • Lara C.C., Oviedo L., Alemán A., Aislados nativos con potencial en la producción de ácido indol acético para mejorar la agricultura. Revista biotecnología en el sector agropecuario y agroindustrial, 2011, 9(1), 17-23Google Scholar

  • Lavado R., Taleisnik E., Grunberg K., Santa María G., Visión sintética de la distribución y magnitud de los suelos afectados por salinidad en la Argentina. La salinización de suelos en la Argentina: su impacto en la producción agropecuaria EDUCC (Editorial Universidad Católica de Córdoba), Córdoba ISBN, 2008, 978-987Google Scholar

  • Maas E.V., Hoffman G., Crop salt tolerance-current assessment. Journal of the irrigation and drainage division, 1977, 103(2), 115-134Google Scholar

  • Martins A., La temperatura “global aumentará 4 grados en 2100” [cited 2016 Nov 22], Available from: http://www.bbc.com/mundo/ultimas_noticias/2014/01/140101_calentaminto_nubes_amGoogle Scholar

  • Mata-Fernández I., Rodríguez-Gamiño M., López-Blanco J., Vela-Correa G., Dinámica de la salinidad en los suelos. Revista Digital del Departamento El Hombre y su Ambiente, 2014, 1(5), 26-35Google Scholar

  • Matson P., Luers A.L., Seto K.C., Naylor R.L., Ortiz-Monasterio I., People, land use, and environment in the Yaqui Valley, Sonora, Mexico. Population, land use, and environment National Academies, Washington DC, 2005, 238-264Google Scholar

  • Nadal Rocamora I., Alteraciones fisiológicas, metabólicas y de la composición de las poblaciones bacterianas de la microbiota de un suelo agrícola tras la aplicación de residuos orgánicos urbanos, 2016Google Scholar

  • Olivier G., The world market of oregano. In: Oregano, 14 Proceedings of the IPGRI international workshop Italy, Rome, 1997, 141-145Google Scholar

  • Ramos Vásquez E., Zúñiga Dávila D., Efecto de la humedad, temperatura y pH del suelo en la actividad microbiana a nivel de laboratorio. Ecología Aplicada, 2008, 7(1-2), 123-130Google Scholar

  • Rivero-Cruz I., Duarte G., Navarrete A., Bye R., Linares E., Mata R., Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. Journal of food science, 2011, 76(2), C309-C317, DOI: 10.1111/j.1750-3841.2010.02022.xCrossrefWeb of ScienceGoogle Scholar

  • Rodríguez H., Fraga R., Gonzalez T., Bashan Y., Genetics of phosphate solubilisation and its potential applications for improving plant growth-promoting bacteria. Plant and soil, 2006, 287(1-2), 15-21, DOI: 10.1007/s11104-006-9056-9CrossrefGoogle Scholar

  • Rowlands D.J., Frame D.J., Ackerley D., Aina T., Booth B.B., Christensen C., et al. Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 2012, 5(4), 256-260, DOI: 10.1038/ngeo1430CrossrefWeb of ScienceGoogle Scholar

  • Schwyn B., Neilands J., Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 1987, 160(1), 47-56, DOI: 10.1016/0003-2697(87)90612-9CrossrefGoogle Scholar

  • Urzi C., Lisi S., Criseo G., Pernice A., Adhesion to and degradation of marble by a Micrococcus strain isolated from it. Geomicrobiology Journal, 1991, 9(2-3), 81-90, DOI: 10.1080/01490459109385990CrossrefGoogle Scholar

  • Villaseñor-López O., Cabanillas-Beltrán R., Tamayo-Esquer L., Fernández-Bocardo J., García-Quintana Y., Alvarez-Olivera P., et al. Evaluación del crecimiento de Cedrela odorata L. En las condiciones del Valle del Yaqui, Sonora, México, 2012, 8(1), 1-8Google Scholar

  • Villavicencio E., Martínez O., Cano A., Berlanga C., Orégano, recurso con alto potencial. Ciencia y Desarrollo, 2007, 33(211),60-66Google Scholar

  • Xiaoqiang C., Hua F., Xuedong P., Xiao W., Min S, Bo F., et al. Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. Journal of Environmental Sciences, 2008, 20(4), 464-469, DOI: 10.1016/S1001-0742(08)62080-XCrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-12-14

Accepted: 2017-03-17

Published Online: 2017-06-08

Published in Print: 2017-02-23


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 260–265, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0029.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in