Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Culturable halotolerant fungal isolates from Southern California Gulf sediments

Sophia González-Martínez / Irma Soria / Nahara Ayala / Amelia Portillo-López
Published Online: 2017-06-27 | DOI: https://doi.org/10.1515/opag-2017-0033


Marine fungal biodiversity as a new precursor of biotechnology products is poorly studied compared to its terrestrial counterpart which has been used as a rich source of bioactive compounds. Because of the importance of marine fungi, we present here the first marine cultivable fungal isolates from sea sediments of 43 to 311 m depth from the Southern California Gulf, Mexico. Seventeen selected halotolerant fungi were isolated and identified by sequencing their ITS 1 and 2 genes. They belong to the phylum Ascomycota and Basidiomycota (16 and 1 isolates). Cladosporium spp were represented by 29%, Aspergillus spp by 24%, Talaromyces spp by 12% and other species by 35%. Two fungi showed antibacterial activity against E. coli and S. aureus.

Keywords : marine fungi; antimicrobial; micromycetes; ITS; Mexican fungi


  • Ahumada-Rudolph R., Cajas-Madriaga D., Rudolph A., Reinoso R., Torres C., Silva M., Becerra J., Variation of sterols and fatty acids as an adaptive response to changes in temperature, salinity and pH of a marine fungus Epicoccum nigrum isolated from the Patagonia Fjords, Rev. Biol. Mar. Oceanogr., 2014, 49, 293-305Google Scholar

  • Alias S.A., Jones E.B., Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand, Malaysia, Fungal Divers., 2000, 5, 9-21Google Scholar

  • Baute M.A., Deffieux G., Baute R., Neveu A., New antibiotics from the fungus Epicoccum nigrum. J. Antibiot., 1978, 31 ,1099-1101CrossrefGoogle Scholar

  • Becerril-Espinosa A., Freel K.C., Jensen P.R., Soria-Mercado I.E., Marine actinobacteria from the Gulf of California: diversity, abundance, and secondary metabolite biosynthetic potential, Antonie van Leeuwenhoek, 2013, 103, 809-19Google Scholar

  • Bonugli-Santos R.C., Vieira G.A.L., Collins C., Fernandes T.C.C., Marin-Morales M.A., Murray P., Sette L.D., Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design, Environ. Sci. Pollut. Res., 2016, 1-10Web of ScienceGoogle Scholar

  • Damare S., Raghukumar C., Raghukumar S., Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res., 2006, 53, 14-27CrossrefGoogle Scholar

  • Edgar R.C., Muscle: A multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, 2004, 5, 1-19CrossrefGoogle Scholar

  • Fell J.W., Statzell-Tallman A., Scorzetti G., Gutierrez M.H., Five new species of yeasts from fresh water and marine habitats in the Florida Everglades, Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., 2011, 99, 533-549Google Scholar

  • Gerber N.N., Shaw S.A., Lechevalier H.A., Structures and antimicrobial activity of Peniophorin A and B, two polyacetylenic antibiotics from Peniophora affinis, Antimicrob. Agents Chemother., 1980, 17, 636-641Google Scholar

  • Gonzalez M., Herrera T., Ulloa M., Hanlin R., Abundance and diversity of microfungi in three coastal beaches of Mexico, Mycoscience, 1998, 39, 115-121Google Scholar

  • Gonzalez M.C., Hanlin R.T., Herrera T., Ulloa M., Fungi colonizing hair-baits from three coastal beaches of Mexico., Mycoscience, 2000, 41, 259-262CrossrefGoogle Scholar

  • González M.C., Hanlin R.T., Ulloa M.A. Check List of Higher Marine Fungi of Mexico, Micotaxon, 2001, 80, 241-253Google Scholar

  • Greiner K., Peršoh D., Weig A., Rambold G., Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat, IMA Fungus, 2014, 5,161-172Google Scholar

  • Gunde-Cimerman N., Zalar P., Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe, Food Technol. Biotechnol., 2014, 52, 170-179Google Scholar

  • Hasan S., Ansari M.I., Ahmad A., Mishra M., Major bioactive metabolites from marine fungi: A Review, Bioinformation, 2015, 11, 176-181Google Scholar

  • Jebaraj C.S., Forster D., Kauff F., Stoeck T., Molecular diversity of fungi from marine oxygen-deficient environments (ODEs), In: Raghukumar C. (Ed), Biology of Marine Fungi, Springer Heidelberg Dordrecht, New York, 2012Google Scholar

  • Jones E.B.G., Sakayaroj J., Suetrong S., Somrithipol S., Pang K.L., Classification of marine Ascomycota, anamorphic taxa and Basidiomycota, Fungal Divers., 2009, 35, 1-187Google Scholar

  • Jones E.B.G., Are there more marine fungi to be described?, Bot. Mar., 2011, 54, 343-354Google Scholar

  • Jones E.B.G., Marine fungi: some factors influencing biodiversity, Fungal Divers., 2000, 4, 53-73Google Scholar

  • Jukes T.H., Cantor C.R., Evolution of protein molecules, In: Munro H.N. (Ed), Mammalian Protein Metabolism, Academic Press, New York, 1969Google Scholar

  • Kimura M., A simple method for estimating the evolutionary rate of base substitutions through comparative studies of nucleotide sequences., J. Mol. Evol., 1980, 16, 111-120CrossrefGoogle Scholar

  • Kohlmeyer J., Kohlmeyer E., Marine mycology: the higher fungi, Academic Press, New York, 1972Google Scholar

  • Kohlmeyer J., Marine fungal pathogens among Ascomycetes and Deuteromycetes, Generalia, 1979, 35, 437-439Google Scholar

  • Kohlmeyer J., Marine Fungi from the Tropics, Mycol. Soc. Am., 1968, 60, 252-270Google Scholar

  • Kupka J., Anke T., Mizumoto K., Giannetti B.M., Steglich W., Antibiotics from basidiomycetes. The effect of marasmic acid on nucleic acid metabolism, J. Antibiot., 1982, 36, 155-160Google Scholar

  • Martin K.J., Rygiewicz P.T., Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts, BMC Microbiol., 2005, 5, 1-11CrossrefGoogle Scholar

  • Michiels A., Van Den Ende W., Tucker M., Van Riet L., Van Laere A., Extraction of high-quality genomic DNA from latex-containing plants, Anal. Biochem., 2003, 315, 85-89Google Scholar

  • Nagahama T., Nagano Y., Cultured and uncultured fungal diversity in deep sea environments, In: Raghukumar C.(Ed), Biology of Marine Fungi, Springer Heidelberg Dordrecht, New York, 2012Google Scholar

  • Petersen H.E., Contributions a la connaissance des phycomycѐtes marins (Chytridineie Fischer). Oversigt K. Danske Vidensk, Seisk. Forhandi, 1905, 5, 439-488Google Scholar

  • Raghukumar C., Damare S., Deep-sea fungi, In: Michiels C., Bartlett D.H., Acrtsen A. (Eds), High Pressure Microbiology, ASM Press, Washington D.C., 2008Google Scholar

  • Raghukumar C., Damare S.R., Singh P., A review on deep-sea fungi: Occurrence, diversity and adaptations, Bot. Mar., 2010, 53, 479-492Google Scholar

  • Roth F.J., Orpurt P.A., Ahearn D.G., Occurrence and distribution of fungi in a subtropical marine environment, Can. J. Bot., 1964, 42, 375-383Google Scholar

  • Singh P., Raghukumar C., Meena R.M., Verma P., Shouche Y., Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches, Fungal Ecol., 2012, 5, 543-553Web of ScienceCrossrefGoogle Scholar

  • Singh P., Raghukumar C., Verma P., Shouche Y., Phylogenetic diversity of fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics., Fungal Divers., 2010, 40, 89-102Web of ScienceGoogle Scholar

  • Takami H., Inoue A., Fuji F., Horikoshi K., Microbial flora in the deepest sea mud of the Mariana trench, FEMS Microbiol. Lett., 1997, 152, 279-285Google Scholar

  • Teunissen P.J.M., Swarts H.J., Field J.A., The de novo production of Drosophilin A (tetrachloro-4-methoxyphenol) and Drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by ligninolytic basidiomycetes, Appl. Microbiol. Biotechnol., 1997, 47 ,695-700Google Scholar

  • Ulloa M., Hanlin R.T., Atlas de micología básica, Concepto S. A. Press, México D. F., 1978Google Scholar

  • Wang J.F., Lin X.P., Qin C., Liao S.R., Wan J.T., Zhang T.Y., Liu Y.H., Antimicrobial and antiviral sesquiterpenoids from spongeassociated fungus, Aspergillus sydowii ZSDS1-F6, J. Antibiot., 2014, 67, 581-583Google Scholar

About the article

Received: 2016-10-05

Accepted: 2017-04-12

Published Online: 2017-06-27

Published in Print: 2017-02-23

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 292–299, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0033.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ramón Ahumada-Rudolph, Vanessa Novoa, and José Becerra
Environmental Monitoring and Assessment, 2019, Volume 191, Number 1
Anna Poli, Alfredo Vizzini, Valeria Prigione, and Giovanna Cristina Varese
Fungal Ecology, 2018, Volume 36, Page 51

Comments (0)

Please log in or register to comment.
Log in