Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS

Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 0.78

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.916

Open Access
See all formats and pricing
More options …

Comparing effects of tillage treatments performed with animal traction on soil physical properties and soil electrical resistivity: preliminary experimental results

Aitor García-Tomillo
  • Corresponding author
  • Centro de Investigaciones Científicas Avanzadas (CICA), grupo AQUASOL-Facultad de Ciencias, Universidad de La Coruña. Campus A Zapateira s/n 15008 A Coruña, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomás de Figueiredo
  • Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (ESA/IPB), Campus de Santa Apolonia, 5300-253 Bragança, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arlindo Almeida
  • Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança (ESA/IPB), Campus de Santa Apolonia, 5300-253 Bragança, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ João Rodrigues / Jorge Dafonte Dafonte
  • Departamento de Ingeniería Agroforestal, Escuela Politécnica Superior de LugoUniversidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Paz-González
  • Centro de Investigaciones Científicas Avanzadas (CICA), grupo AQUASOL-Facultad de Ciencias, Universidad de La Coruña. Campus A Zapateira s/n 15008 A Coruña, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ João Nunes / Zulimar Hernandez
  • Grupo de Edafología, Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Tomas y Valiente, s/n, Cantoblanco, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-30 | DOI: https://doi.org/10.1515/opag-2017-0036


Soil Compaction results from compressive forces applied to compressible soil by machinery wheels, combined with tillage operations. Draft animal‐pulled equipment may also cause soil compaction, but a huge gap exists on experimental data to adequately assess their impacts and, actually, animal traction is an option seen with increasing potential to contribute to sustainable agriculture, especially in mountain areas. This study was conducted to assess the impacts on soil compaction of tillage operations with motor tractor and draft animals. In a farm plot (Vale de Frades, NE Portugal) treatments were applied in sub‐plots (30 m × 3 m), consisting in a two way tillage with tractor (T), a pair of cows (C) and a pair of donkeys (D). Undisturbed soil samples (120) were taken before and after operations for bulk density (BD) and saturated hydraulic conductivity (Ks). The relative changes in BD observed after tillage in the 0-0.05 m soil depth increased after operations in all treatments. The increase was higher in the tractor sub-plot (15%) than in those where animal traction was used (8%). Before operation Ks class was rapid and fast in all samples, and after operation this value was reduced to 33% in T, whereas it reached 83% in C. Electrical Resistivity Tomography (ERT) was useful as a tool to identify the alterations caused by tillage operations on soil physical status. These preliminary results confirm the potential of animal traction as an option for mountain agri‐environments, yet it requires much wider research to soundly ground its assets.

Keywords : Animal traction; Soil compaction; Saturated hydraulic conductivity; Electrical Resistivity Tomography


  • Agroconsultores e Coba. Carta do Solos, Carta do uso Actual da Terra e Carta da adaptação da Terra do Nordeste de Portugal. Universidade de Trás-as-Montes e Alto Douro, 1991Google Scholar

  • Al-Gaadi K., Employing electromagnetic induction techniques for the assessment of soil compaction. American Journal of Agricultural Biological Sciences, 2012, 4, 425-434Google Scholar

  • Aranguren-Mendez J., Jordana J., Gomez M., Genetic diversity in Spanish donkey breeds using microsatellite DNA markers. Genet. Sel. Evol., 2001, 33, 433-442Google Scholar

  • Batey T., Soil compaction and soil management - a review. Soil Use Management, 2009, 25, 335-345Google Scholar

  • Beja-Pereira A., Ferrand N., Os recursos genéticos e o desenvolvimento sustentável. In: SPI Sociedade Portuguesa de Inovação, editor. Genética, biotecnologia e agricultura, 2005, 16-21Google Scholar

  • Bennewitz J., Kantanen J., Tapio I., Li M.H., Kalm E., Vilkki J., Ammosov I., Ivanova Z., Kiselyova T., Popov R., Meuwissen T.H., Estimation of breed contributions to present and future genetic diversity of 44 North Eurasian cattle breeds using core set diversity measures. Genet. Sel. Evol., 2006, 38, 201-220CrossrefGoogle Scholar

  • Beretti V., Zanon A., Soffiantini C.S., Sabbioni A., Preliminary results about morphological and demographic traits of Romagnolo donkey. Annali della Facolta` di Medicina Veterinaria di Parma, 2005, 25, 131-144Google Scholar

  • Besson A., Cousin I., Samouëlian A., Boizard H., Richard G., Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil Tillage Research, 2004, 79, 239-249CrossrefGoogle Scholar

  • Besson A., Séger M., Giot G., Cousin I., Identifying the characteristic scales of soil structural recovery after compaction from three in-field methods of monitoring. Geoderma, 2013, 204-205, 130-139Web of ScienceGoogle Scholar

  • Brevik E.C., Fenton T.E., The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38. Soil Survey Horizons, 2004, 45, 96-102Google Scholar

  • Colli L., Perrotta G., Negrini R., Bomba L., Bigi D., Zambonelli P., Verini Supplizi A., Liotta L., Ajmone-Marsan P., Detecting population structure and recent demographic history in endangered livestock breeds: the case of the Italian autochthonous donkeys. Anim. Genet., 2013, 44(1), 69-78Web of ScienceGoogle Scholar

  • da Silva A.P., Imhoff S., Corsi M., Evaluation of soil compaction in an irrigated short-duration grazing system. Soil and Tillage Research, 2003, 70, 83-90Google Scholar

  • Dafonte J., Raposo J.R., Valcárcel M., Fandiño M., Martínez E.M., Rey B.J., Cancela J.J., Utilización de la tomografía eléctrica resistiva para estimar el contenido de agua en el suelo en viña bajo diferentes sistemas de riego, 2013, 57-62Google Scholar

  • Delgado R., Sanchez-Marañon M., Martin-García J.M., Aranda V., Serrano-Bernado F., Rosua, J.L., Impact of ski pistes on soil properties: a case study from a mountainous area in the Mediterranean Region. Soil Use and Management, 2007, 23, 269-277Google Scholar

  • Drewry J.J., Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agriculture., Ecosystems and Environment, 2006, 114, 159-169Google Scholar

  • Drewry J.J., Cameron K.C., Buchan G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing: a review. Australian Journal of Soil Research, 2008, 46, 237-256CrossrefGoogle Scholar

  • European Commission, European Environmental Agency (EEA)- The State of Soil in Europe - JCR Reference Report, 2012Google Scholar

  • FAO, The State of the World’s Animal Genetic Resources for Food and Agriculture - in brief. In: Piling D., Rischkowsky B., editors. Rome, 2007, 31-36Google Scholar

  • Farzamian M., Monteiro Santos F.A., Khalil M.A. Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated Soil Journal of Applied Geophysics, 2015, 112, 175-189Web of ScienceGoogle Scholar

  • Gandini G.C., Villa E. Analysis of the cultural value of local livestock breeds: a methodology. J. Anim. Breed. Genet., 2003, 120, 1-11Google Scholar

  • García-Tomillo A., de Figueiredo T., Dafonte J., Paz-González A., Almeida A. Estudio con tomografía de resistividad eléctrica del efecto del tráfico de maquinaria en un suelo agrícola. Zona no Saturada del Suelo (ZNS´15) Conference. Alcalá de Henares (Spain) 2015Google Scholar

  • Hamza M.A., Anderson WK. Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Land Tillage Research., 2005 82, 121-145.Google Scholar

  • Hillel D., Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations, Academic Press, 1998Google Scholar

  • Hodges J., Conservation of genes and culture: historical and contemporary issues. Poult. Sci., 2006, 85, 200-209Google Scholar

  • Hoffmann I., Livestock biodiversity. Revue Scientifique et Technique-Office International des Epizooties, 2010, 29, 73-86Google Scholar

  • Horn R., Domzal H., Slowinskajurkiewicz A., van Ouwerkerk C., Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 1995, 35, 23-36Google Scholar

  • Horn R., Fleige H., A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Tillage Research, 2003, 73, 89-99Google Scholar

  • Ivankovic A, Kavar T., Caput P., Mioc B., Pavic V., Dovc P., Genetic diversity of three donkey populations in the Croatian coastal region. Animal Genetics, 2002, 33(3), 169-177CrossrefGoogle Scholar

  • Köppen W., Das geograsphica system der Klimate [On a geographic system of climate]. In W.Köppen & G. Geiger (Eds.), Handbuch der Klimatologie, Gebr, Bontraerger, [Handbook of Climatology], 1936, 1.C, pp. 1-44Google Scholar

  • Loke M.H., Barker R., Rapid least-squares inversion of apparent resistivity pseudosection by a quasi-Newton method. Geophysical Prospecting, 1996, 44, 131-152CrossrefGoogle Scholar

  • Loke M.H., RES2DINV ver. 3.59 for Windows XP/Vista/7, Rapid 2-D Resistivity & IP inversion using the least-squares method. Geotomo Software. Manual, 2010Google Scholar

  • Mc Garry D., Sharp G., A rapid, immediate, farmer-usable method of assessing soil structure condition to support conservation agriculture. In: L.Garcia Torres, ed. Conservation agriculture: environment, farmers experiences, innovations, socioeconomy, policy. Springer Netherlands, 2003, 375-380Google Scholar

  • Mooney S.J., Nipattasuk W., Quantification of the effects of soil compaction on water flow using dye tracers and image analysis. Soil Use and Management 2003, 19, 356-363Google Scholar

  • Needham P., Scholz G., Moor G., 4 Physical restrictions to root growth. 4.1 Hard layers in soils. 4.2 Subsurface compaction. In: Soil guide: a handbook for understanding and managing agricultural soils (ed. G. Moore), Dept of Agriculture, Western Australia. Bulletin No. 4343, 2004,109-124Google Scholar

  • Ortiz-Cañavate J., Las máquinas Agrícolas y su aplicación. Ediciones Mundi-Prensa, 2012, p.545Google Scholar

  • Rossi R., Amato M., Bitella G., Bochicchio R. Electrical resistivity tomography to delineate greenhouse soil variability. Int. Agrophys 2013, 13(27), 211-218Web of ScienceGoogle Scholar

  • Samouelian A., Cousin I., Tabbagh A., Bruand A., Richard G., Electrical resistivity survey in soil science: a review. Soil Tillage Research, 2005, 83, 173-193CrossrefGoogle Scholar

  • Seladji S., Cosenza P., Tabbagh A., Ranger J., Richard G., The effect of compaction on soil electrical resistivity: a laboratory investigation, European Journal of Soil Science, 2010, 61(6), 1365-2389Web of ScienceGoogle Scholar

  • Sigua G.C, Coleman S.W., Long-term effect of cow congregation zone on soil penetrometer resistance: implications for soils and forage quality. Agronomy for Sustainable Development, 2009, 29, 517-523Web of ScienceCrossrefGoogle Scholar

  • Simianer H., Decision making in livestock conservation. Ecological Economics, 2005, 53, 559-572Google Scholar

  • Tullberg J.N., Hunter, M.N., Paull C.J., Smith G.D., Proceedings of Queensland Department of Primary Industries Soil Compaction Workshop. Toowoomba, Australia, Why control field traffic, 1990, 28, 13-25Google Scholar

  • WRB - World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, FAO, Rome, 2014. No. 106Google Scholar

About the article

Received: 2017-01-31

Accepted: 2017-04-12

Published Online: 2017-06-30

Published in Print: 2017-02-23

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 317–328, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0036.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in