Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Electrical resistivity and spatial variation in agriculture terraces: statistical correlation between ert and flow direction algorithms

J. Fernandes / C. Bateira / A. Costa / B. Fonseca / R. Moura
Published Online: 2017-06-30 | DOI: https://doi.org/10.1515/opag-2017-0037

Abstract

The construction of earthen embankment terraces in the Douro Region raises a set of problems related to hydrological processes. The main objective of this study is the evaluation of the spatial variation of electrical resistivity in agriculture terraces at Douro valley (Portugal). To achieve this objective, two variables are analysed, the soil electrical resistivity and the flow direction algorithm. In a field survey we recorded 13 electrical resistivity profiles. The contributing area was calculated with the algorithms D∞ (Deterministic Infinity Flow) and MFD (Multiple Flow Direction) and the results are the base of the internal runoff modelling, both supported by the digital elevation model with a spatial resolution of 1m2. A correlation between the spatial variation of the soil electrical resistivity represented by the standard deviation of the electrical resistivity for each profile and the average value of the contributing area coincident with each profile was established. The electrical resistivity standard deviation seems to be moderately well correlated according to the D∞ algorithm at about 1m of depth, and it has a good correlation at 1,5m to 2m of depth with the MFD algorithm. Taken together, the results show a significant positive statistical correlation between the electrical resistivity standard deviation and the contributing areas (MFD and D∞) depending on the soil depth.

Keywords : electrical resistivity tomography; multiple flow direction; D-infinity; electrical resistivity spatial variation; agricultural terraces

References

  • Akgun A., Erkan O., Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 2016, 9(2), 1-15, DOI: 10.1007/s12517-015-2142-7Web of ScienceCrossrefGoogle Scholar

  • Aristizabal E., Garcia E., Martinez C., Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Natural Hazards, 2015, 78(1), 621-634, DOI: 10.1007/s11069-015-1736-4CrossrefWeb of ScienceGoogle Scholar

  • Braga A.C.D.O., Malagutti Filho W., Dourado J.C., Resistity (DC) method applied to aquifer protection studies. Revista Brasileira de Geofisica, 2006, 24(4), 573-581Google Scholar

  • Brillante L., Mathieu O., Bois B., van Leeuwen C., Leveque J., The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. Soil, 2015, 1, 273-286, DOI: 10.5194/soil-1-273-2015CrossrefGoogle Scholar

  • Brunet P., Clement R., Bouvier C., Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) - A case study in the Cevennes area, France. Journal of Hydrology, 2010, 380, 146-153, DOI: 10.1016/j.jhydrol.2009.10.032Web of ScienceCrossrefGoogle Scholar

  • Calamita G., Brocca L., Perrone L., Piscitelli S., Lapenna V., Melone F., Moramarco T., Electrical resistivity and TDR methods for soil moisture estimation in Italy test-sites. Journal of Hydrology, 2012, 454-455, 101-112, DOI: 10.1016/j.jhydrol.2012.06.001Web of ScienceCrossrefGoogle Scholar

  • Chambers J.E., Gunn D.A., Wilkinson P.B., Ogilvy R.D., Ghataora G.S., Burrow M.P.N., Tilden Smith R., Non-invasive time-lapse imaging of moisture content changes in earth embankments using electrical resistivity tomography (ERT). In Ed. Ellis E, Yu HS, McDowell G, Dawson A., Thom N, editors. Advances in Transportation Geotechnics. Proc. 1st int. conf. transportation geotechnics, Nottingham, 2008, 475-480Google Scholar

  • Chen L., Yin Z., Zhang P., Relationship of resistivity with water content and fissures of unsaturated expansive soils. Journal of China University of Mining and Technology, 2007, 17(4), 537-540, DOI: http://dx.doi.org/10.1016/S1006-1266(07)60141-2CrossrefGoogle Scholar

  • Claessens L., Heuvelink G.B.M., Schoorl J.M., Veldkamp A., DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms, 2005, 30, 461-477, DOI: 10.1002/esp.1155CrossrefGoogle Scholar

  • Costa‐Cabral M.C., Burges S.J., Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water resources research, 1994, 30(6), 1681-1692, DOI: 10.1029/93WR03512CrossrefGoogle Scholar

  • Dafonte J.D., Raposo J.R., Valcarcel M., Fandino M., Martinez E.M., Rey B.J., Cancela J.J., Utilizacion de la tomografia electrica resistiva para estimar el contenido de agua en el suelo en vina bajo diferentes sistemas de riego. Estudios en la Zona No Saturada del Suelo, Vol. XI - ZNS’13. Universidade de Santiago de Compostela, 2013, 55-67Google Scholar

  • Dietrich W., Montgomery D., SHALSTAB: a digital terrain model for mapping shallow landslide potential. National Council of the Paper Industry for Air and Stream Improvement (NCASI) Technical Report, 1998, 26 pGoogle Scholar

  • Erskine R.H., Green T.R., Ramirez J.A., MacDonald L.H., Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research, 2006, 34, WR09416, DOI: 10.1029/2005WR004648CrossrefGoogle Scholar

  • FAO-ISSS-ISRIC, World reference base for soil resources. A framework for international classification correlation and communication. Roma, 2006, 71-72Google Scholar

  • Faria A., Bateira C., Soares L., Fernandes J., Goncalves J., Marques F., Landslide susceptibility evaluation on agricultural terraces of Douro Valley (Portugal), using physically based mathematical models. European General Assembly, Geophysical Research Abstracts, 2016, 18, DOI: EGU2016-17801Google Scholar

  • Fernandes J., Bateira C., Soares L., Faria A., Oliveira A, Hermenegildo C., Moura C., Goncalves J., SIMWE model application on susceptbility anlysis to bank gully erosion in Alto Douro Wine Region agriculture terraces. Catena, 2017, 153, 39-49, DOI: https://doi.org/10.1016/j.catena.2017.01.034CrossrefGoogle Scholar

  • Friedel S., Thielen A., Springman S.M., Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Apllied Geophysics, 2006, 60, 100-114, DOI: http://dx.doi.org/10.1016/j.jappgeo.2006.01.001CrossrefGoogle Scholar

  • Friedman S.P., Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agr., 2005, 46, 45-70, DOI: http://dx.doi.org/10.1016/j.compag.2004.11.001CrossrefGoogle Scholar

  • García-Tomillo A., Figueiredo T., Dafonte J.D., Almeida.A., Paz-Gonzalez A., Estudio com tomografia de resistividad eletrica del efecto del trafico de maquinaria en un suelo agricola. Estudios en la Zona No Saturada del Suelo, 2015, XII, 1-5, ISBN: 978-84-16133-91-8Google Scholar

  • Gunn D.A., Chambers J.E., Uhlemann S., Wilkinson P.B., Meldrum P.I., Dijkstra T. A., Hughes P.N., Moisture monitoring in clay embankments using electrical resistivity tomography. Construction and Building Materials, 2015, 92, 82-94, DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.06.007CrossrefGoogle Scholar

  • Gunn D.A,, Raines M.G., Chambers J.E., Haslam E., Meldrum P.I., Holyoake S., Kirkham M., Williams G., Ghataora G.S., Burrow M.P.N., Embankment stiffness characterisation using MASW and continuous surface wave methods. In: Proc. 11th int. conf. railway engineering, London, 2011Google Scholar

  • Habtezion N., Tahmasebi Nasab M., Chu X., How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes? Hydrological Processes, 2016, 30(25), 4870-4892, DOI: 10.1002/hyp.10967Web of ScienceCrossrefGoogle Scholar

  • Holmgren P., Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological processes, 1994, 8(4), 327-334CrossrefGoogle Scholar

  • Koch K., Wenninger J., Uhlenbrook S., Bonnel M., Joint interpretation of hydrological and geophysical data: Electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany. Hydrological Processes, 2009, 23, 1501-1513, DOI: 10.1002/hyp.7275CrossrefWeb of ScienceGoogle Scholar

  • Lea N.L., An aspect driven kinematic routing algorithm, in Overland Flow: Hydraulics and Erosion Mechanics, edited by A. J. Parsons and A.D. Abrahams, Chapman & Hall, New York, 1992Google Scholar

  • Lesschen J.P., Cammeraat L.H., Nieman T., Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surface Processes and Landforms, 2008, 33, 1574-1584, DOI: 10.1002/esp.1676CrossrefGoogle Scholar

  • Loke M.H., Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys, 1999, pp. 1-2Google Scholar

  • López‐Vicente M., Navas A., Routing runoff and soil particles in a distributed model with GIS: implications for soil protection in mountain agricultural landscapes. Land Degradation & Development, 2010, 21(2), 100-109, DOI: 10.1002/ldr.901CrossrefGoogle Scholar

  • McCarter W.J., The electrical resistivity characteristics of compacted clays. Geotechnique, 1984, 34(2), 263-267, DOI: 10.1680/geot.1984.34.2.263CrossrefGoogle Scholar

  • Michot D., Benderitter Y., Dorigny A., Nicoullaud B., King D., Tabbagh A., Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 2003, 39(5), 1401-1420, DOI: 10.1029/2002WR001581CrossrefGoogle Scholar

  • Nery T.D., Vieira B.C., Susceptibility to shallow landslides in a drainage basin in the Serra do Mar, Sao Paulo, Brazil, predicted using the SINMAP mathematical model. Bulletin of Engineering Geology and the Environment, 2015, 74(2), 369-378, DOI: 0.1007/s10064-014-0622-8Google Scholar

  • O’Callaghan J.F., Mark D.M., The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 1984, 28(3), 323-344, DOI: http://dx.doi.org/10.1016/S0734-189X(84)80011-0CrossrefGoogle Scholar

  • Pack R.T., Tarboton D.G., Goodwin C.N., The SINMAP approach to terrain stability mapping. In 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, 1998, 21, p. 25Google Scholar

  • Piegari E., Cataudella V., Di Maio R., Milano L., Nicodemi M., Soldovieri M.G., Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. Journal of Apllied Geophysics, 2009, 68, 151-158, DOI: http://dx.doi.org/10.1016/j.jappgeo.2008.10.014CrossrefGoogle Scholar

  • Pozdnyakov A.I., Pozdnyakova L.A., Karpachevskii L.O., Relationship between water tension and electrical resistivity in soils. Eurasian Soil Science, 2006, 39, S78-S83, DOI: 10.1134/S1064229306130138CrossrefGoogle Scholar

  • Quinn P., Beven K., Chevalier P., Planchon O., The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 1991, 5, 59 - 79, DOI: 10.1002/hyp.3360050106CrossrefGoogle Scholar

  • Rabonza M.L., Felix R.P., Lagmay A.M.F.A., Eco R.N.C., Ortiz I.J.G., Aquino D.T., Shallow landslide susceptibility mapping using high-resolution topography for areas devastated by super typhoon Haiyan. Landslides, 2016, 13(1), 201-210, DOI: 10.1007/s10346-015-0626-xWeb of ScienceCrossrefGoogle Scholar

  • Robain H., Descloitres M., Ritz M., Atangana Q.Y., A multiscale electrical survey of a lateritic soil system in the rain forest of Cameroon. Journal of Applied. Geophysics, 1996, 34, 237-253, DOI: 10.1016/0926-9851(95)00023-2CrossrefGoogle Scholar

  • Rossi R., Pollice A., Diago M., Oliveira M., Millan B., Bitella G., Amato M., Tardaguila J., Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture. Sensors, 2013, 13, 1121-1136, DOI: 10.3390/s130101121CrossrefWeb of ScienceGoogle Scholar

  • Samouëlian A., Cousin I., Tabbagh A., Bruand A., Richard G., Electrical resistivity survey in soil science: a review. Soil Tillage Research. 2005, 83, 173-193, DOI: http://dx.doi.org/10.1016/j.still.2004.10.004CrossrefGoogle Scholar

  • Sarkar S., Roy A.K., Raha P., Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. Catena, 2016, 142, 36-46, DOI: http://dx.doi.org/10.1016/j.catena.2016.02.009CrossrefGoogle Scholar

  • Schwartz B.F., Schreiber M.E., Yan T., Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of Hydrology, 32008, 62, 234-246, DOI: http://dx.doi.org/10.1016/j.jhydrol.2008.08.027CrossrefGoogle Scholar

  • Seibert J., McGlynn B.L., A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 2007, 43(4), DOI: 10.1029/2006WR005128, 2007Web of ScienceCrossrefGoogle Scholar

  • Sousa B., Sequeira A., Geological Report on the Alijo sheet No. 10D (1:50 000). Portuguese Geological Survey, Lisbon, 1989, 59 p.Google Scholar

  • Tarboton D.G., A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research, 1997, 33(2), 309-319, DOI: 10.1029/96WR03137CrossrefGoogle Scholar

  • Teixeira M., Bateira C., Marques F., Vieira B., Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides, 2015, 12(3), 455-468, DOI: 10.1007/s10346-014-0494-9CrossrefWeb of ScienceGoogle Scholar

  • Werban U., al Hagrey S.A., Rabbel W., Monitoring of root-zone water content in the laboratory by 2D geoelectrical tomography. Journal of Plant Nutrition and Soil Science, 2008, 171, 927-935, DOI: 10.1002/jpln.200700145. 781.Web of ScienceCrossrefGoogle Scholar

  • Yang T.H., Chen Y.C., Chang Y.C., Yang S.C., Ho J.Y., Comparison of different grid cell ordering approaches in a simplified inundation model, Water, 2015, (2), 438-454Google Scholar

  • Zhang W., Montegomery D.R., Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 1994, 30,(04), 1019-1028, DOI: 10.1029/93WR03553Google Scholar

  • Zond geophysical software - Program for two-dimensional interpretation of data obtained by resistivity and induced polarization methods, 2016, Retrieved from http://zond-geo.ru/english/zond-software/ert-and-ves/zondres2dGoogle Scholar

About the article

Received: 2017-01-31

Accepted: 2017-05-30

Published Online: 2017-06-30

Published in Print: 2017-02-23


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 329–340, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0037.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in