Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Roots, Tubers and Bananas: Planning and research for climate resilience

Graham Thiele / Awais Khan / Bettina Heider / Jürgen Kroschel / Dieudonné Harahagazwe / Maria Andrade / Merideth Bonierbale / Michael Friedmann / Dorcus Gemenet / Mihiretu Cherinet / Roberto Quiroz / Emile Faye
  • Centre de Coopération Internationale en Recherche Agronomique pour le Développement, (CIRAD), Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Dangles
Published Online: 2017-07-08 | DOI: https://doi.org/10.1515/opag-2017-0039

Abstract

The CGIAR Research Program (CRP) on Roots, Tubers and Bananas (RTB) includes vegetatively propagated staple crops linked by common breeding, seed, and postharvest issues, and by the frequency with which women are involved in their production and use. RTB crops are the backbone of food security across the humid tropics in sub-Saharan Africa (SSA) and in more localized areas of Asia and Latin America. Around 300 million poor people in developing countries currently depend on RTB value chains for food security, nutrition and income. Climate change poses challenges which could undo progress in poverty reduction and markedly increase food insecurity. This article examines planning and research for climate resilience across RTB crops, with a particular focus on the contrasting potato and sweet potato cases in SSA. A six-step framework for climatesmart breeding is proposed: (1) downscaling climate change models and crop modeling; (2) identifying and understanding key climate change responsive traits; (3) breeding and varietal selection; (4) phenotyping and genomic research to accelerate gains; (5) developing management options for climate-smart varieties; and (6) deployment (seed systems). In summary, climate-smart breeding means we need to do what we already do but faster, better, and smarter.

Keywords: roots; tubers; bananas; potatoes; sweet potato; climate change; poverty; breeding

References

  • Asfaw A., Bonierbale M., Khan M.A., Integrative breeding strategy for making climate-smart potato varieties for sub-Saharan Africa. In: Low J, Nyongesa M, Quinn S, Parker M, eds. Potato and Sweetpotato in Africa. Transforming the value chains for food and nutrition security. Oxfordshire, UK: CABI International, 2015, 134-142, ISBN 978-1-78064-420-2Google Scholar

  • Bonierbale M., Amoros W., Mejoramiento genético de la papa y resiliencia climática. Compendio de Resúmenes XXVII Congreso Asociación Latinoamericana de la Papa (ALAP). Panamá 2016.22 al 26 de Agosto, 2016, 30-32, ISBN: 978-9962-677-43-7Google Scholar

  • Comas L.H., Becker S.R., Cruz V.M.V., Byrne P.F., Dierig D.A., Root traits contributing to plant productivity under drought. Front. Plant Sci., 2013, 4, 1-16Google Scholar

  • Gajanayake B., Reddy K.R., Shankle M.W., Quantifying growth and developmental responses of sweetpotato to mid- and late-season temperature. Agron. J., 2015, 107, 1854-1862Web of ScienceGoogle Scholar

  • Gibson R., Phillips D., Lukonge E., Obong Y., Rwegasira G., Kalule S., Mushobozi W., Sweetpotato vines (planting material) as a business in Africa: Commercializing seed systems in Uganda and Tanzania. NRI publication, 2016Google Scholar

  • Hallegatte S., Bangalore M., Bonzanigo L., Fay M., Kane T., Narloch U., Rozenberg J., Treguer D., Vogt-Schilb A., Shock Waves: Managing the Impacts of Climate Change on Poverty. Climate Change and Development Series. Washington, DC: World Bank, 2016, doi:CrossrefGoogle Scholar

  • Jarvis A., Ramirez-Villegas J., Herrera Campo B.A., Navarro-Racines C., Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 2012, 5, 9-29Google Scholar

  • Khan A., Sovero V., Gemenet D., Genome-assisted breeding for drought resistance. Current Genomics, 2016, 17, 330-342CrossrefGoogle Scholar

  • Kooman P.L., Haverkort A.J., Modelling development and growth of the potato crop influenced by temperature and day length: LINTUL-POTATO in A.J. Haverkort, D.K.L. MacKerron (Eds.), Potato Ecology and Modelling of Crops Under Conditions Limiting Growth, Kluwer Academic, Dordrecht, 1995, 41-60Google Scholar

  • Munyua H., Sweetpotato planting material: the Triple S System - Storage, Sand, Sprouting. International Potato Center and Natural Resources Institute Publication, 2013 (Available from http://www.sweetpotatoknowledge.org/wp-content/uploads/2015/12/TRIPLE-S-SYSTEM-SIDE2-ENGLISH.pdf)Google Scholar

  • Okonya J.S., Kroschel J., Incidence, abundance and damage by the sweet potato butterfly (Acraea acerata Hew.) and the African sweet potato weevils (Cylas spp.) across an altitude gradient in Kabale district, Uganda. International Journal of AgriScience, 2013, 3(11), 814-824Google Scholar

  • Okonya J.S., Mujica N., Carhuapoma P., Kroschel J., Sweetpotato weevil, Cylas puncticollis (Boheman 1883). In: Kroschel J, Mujica N, Carhuapoma P, Sporleder M, eds. Pest distribution and risk atlas for Africa. Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. Lima: CIP, 2016, pp. 54-63, ISBN 978-92-9060-476-1, doi 10.4160/9789290604761-4CrossrefGoogle Scholar

  • Ravi V., Naskar S.K., Makeshkumar T., Babu B., Prakash Krishnan B.S., Molecular Physiology of Storage Root Formation and Development in Sweet Potato (lpomoea batatas (L.) Lam.). J. Root Crops, 2009, 35, 1-27Google Scholar

  • RTB CGIAR Research Program on Root, Tubers and Bananas. 2016. Proposal 2017-2022. Lima: CIPGoogle Scholar

  • Sparks A.H., Forbes G.A., Hijmans R.J., Garrett K.A., Climate change may have limited effect on global risk of potato late blight. Glob. Change. Biol., 2014, 20, 3621-3631, doi:CrossrefWeb of ScienceGoogle Scholar

  • Yactayo W., Ramírez D.A., Gutiérrez R., Mares V., Posadas A., Quiroz R., Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Management, 2013, 123, 65-70Google Scholar

  • Washington R., New M., Hawcroft M., Pearce H., Rahiz M., Karmacharya J., Climate Change in CCAFS Regions: Recent Trends, Current Projections, CropClimate Suitability, and Prospects for Improved Climate Model Information. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark, 2012, (Available from https://cgspace.cgiar.org/rest/bitstreams/14876/retrieve)Google Scholar

  • Wiebe K., Strategic foresight: Long-term projections from IFPRI, GFSF and AgMIP. Presented at the 12th Meeting of the Independent Science & Partnership Council held in Rome, 16 September 2015Google Scholar

About the article

Received: 2017-01-31

Accepted: 2017-05-08

Published Online: 2017-07-08

Published in Print: 2017-02-23


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 350–361, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0039.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael Friedmann, Asrat Asfaw, Noelle Anglin, Luis Becerra, Ranjana Bhattacharjee, Allan Brown, Edward Carey, Morag Ferguson, Dorcus Gemenet, Hanele Lindqvist-Kreuze, Ismail Rabbi, Mathieu Rouard, Rony Swennen, and Graham Thiele
Agriculture, 2018, Volume 8, Number 7, Page 89

Comments (0)

Please log in or register to comment.
Log in