Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions

Franco Martínez María de Lourdes
  • Maestria en Sistemas Ambientales. Instituto Tecnologico de Durango. Felipe Pescador 1803 Ote, Nueva Vizcaya, 34080 Durango, Dgo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rodríguez Rosales María Dolores Josefina
  • Maestria en Sistemas Ambientales. Instituto Tecnologico de Durango. Felipe Pescador 1803 Ote, Nueva Vizcaya, 34080 Durango, Dgo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moreno Medina Cuauhtémoc Ulises / Martínez Roldán Alfredo de Jesús
  • Corresponding author
  • Maestria en Sistemas Ambientales. Instituto Tecnologico de Durango. Felipe Pescador 1803 Ote, Nueva Vizcaya, 34080 Durango, Dgo, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-18 | DOI: https://doi.org/10.1515/opag-2017-0042


Microalgae have the potential of consuming high amounts of nitrogen and phosphorus from wastewater; thus, avoiding the risk of eutrophication of the water bodies. Nevertheless, ammonium can usually inhibit the growth of microalgae. Tolerance to ammonium is specific of each strain; so, the development of tertiary wastewater treatment proposals, employing microalgae, has as a first step the study of its tolerance to N-NH3. In this work, the tolerance of Chlorella vulgaris to N-NH3, using mineral medium, was studied. Afterward, C. vulgaris was used to remove nitrogen and phosphorus from a real wastewater. The maximal biomass concentration was reached at 66 ppm N-NH3 (0.49 gL-1) with the complete depletion of the ammonium and a phosphorus consumption of 2 mgPi L-1d-1 in all the experiments. When C. vulgaris was grown in real wastewater, the final biomass concentration was 0.267 g L-1 and the nutrients (N and P) were totally consumed after 3 days. According with these results, this strain of Chlorella has the potential for the removal of nitrogen and phosphorus from tertiary wastewater and the biomass produced in the process can be used for the production of high value products, such as pigments, proteins, carbohydrate or used for animal feed.

Keywords: Nitrogen; Phosphorus; Bioremediation; Chlorella vulgaris


  • Barsanti L., Gualtieri P., Algae: anatomy, biochemistry, and biotechnology. Vasa. 2006.Web of ScienceGoogle Scholar

  • Britto D.T., Kronzucker H.J. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol., 2002, 159(6), 567-584Google Scholar

  • Cade-Menun B.J., Paytan A., Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar. Chem., 2010, 121(1), 27-36Web of ScienceGoogle Scholar

  • Cañizares-Villanueva R.O., Gonzalez-Moreno S., Dominguez-Bocanegra A.R., Growth, nutrient assimilation and cadmium removal by suspended and immobilized Scenedesmus acutus cultures: influence of immobilization matrix. In: Chen F., Jiang Y., editors. Algae their Biotechnol. Potential. Springer Netherlands, 2001, p. 147-61Google Scholar

  • Cañizares-Villanueva R.O., Ramos A., Corona A.I., Monroy O., de la Torre M., Gomez-Lojero C., et al. Phormidium treatment of anaerobically treated swine wastewater. Water Res., 1994, 28(9), 1891-1895CrossrefGoogle Scholar

  • Cañizares R.O., Dominguez A.R., Growth of Spirulina maxima on swine waste. Bioresour. Technol., 1993, 45(1), 73-75CrossrefGoogle Scholar

  • Cornet J.F., Dussap C.G., Cluzel P., Dubertret G., A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations. Biotechnol. Bioeng., 1992, 40(7), 826-834CrossrefGoogle Scholar

  • Dodds W.K., Smith V.H., Nitrogen, phosphorus, and eutrophication in streams. Inland Waters. 2016, 6(2), 155-64Google Scholar

  • González L.E., Canizares R.O., Baena S., Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol., 1997, 60(3), 259-262CrossrefGoogle Scholar

  • Harwood J., Kuhn A., A colorimetric method for ammonia in natural waters. Water Res., 1970, 4(12), 805-811Google Scholar

  • Hernández-Zamora M., Perales-Vela H.V., Flores-Ortiz C.M., Canizares-Villanueva R.O., Physiological and biochemical responses of Chlorella vulgaris to Congo Red. Ecotoxicol. Environ. Saf., 2014, 108, 72-77Web of ScienceGoogle Scholar

  • Isleten-Hosoglu M., Gultepe I., Elibol M., Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem. Eng. J., 2012, 61, 11-9Web of ScienceGoogle Scholar

  • Kwon H.K., Oh S.J., Yang H.S., Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments. Bioresour. Technol., 2013, 129, 387-395Web of ScienceGoogle Scholar

  • Liu N., Li F., Ge F., Tao N., Zhou Q., Wong M., Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: Isotope fractionation and proteomic approaches. Bioresour. Technol., 2015, 190, 307-314Web of ScienceGoogle Scholar

  • Markou G., Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production. Bioresour. Technol., 2015, 193, 35-41Web of ScienceGoogle Scholar

  • Martínez-Roldan A.J., Perales-Vela H., Canizares-Villanueva R.O., Torzillo G., Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J. Appl. Phycol., 2014, 26(1), 115-121CrossrefWeb of ScienceGoogle Scholar

  • Martínez-Roldan A.J., Produccion de biomasa de Spirulina maxima en cultivo por lote utilizando un fotobiorreactor “air-lift” de cara plana y agua residual sintetica. Master Thesis. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional; 2008Google Scholar

  • Muñoz R., Guieysse B., Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40 2799-815CrossrefGoogle Scholar

  • Nasr M., Ateia M., Hassan K. Modeling the effects of operational parameters on algae growth. Algal Biofuels, 2017, 127-139Google Scholar

  • Rehman A., Shakoori A.R., Heavy metal resistance Chlorella spp., isolated from tannery effluents, and their role in remediation of hexavalent chromium in industrial waste water. Bull. Environ. Contam. Toxicol., 2001, 66(4), 542-547Google Scholar

  • Rehman A., Shakoori F.R., Shakoori A.R., Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J. Microbiol. Biotechnol., 2006, 23(6), 753-758CrossrefGoogle Scholar

  • Rier S., Kinek K., Hay S., Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshwater Science, 2016, 35(2), 490-502Google Scholar

  • Soletto D., Binaghi L., Lodi A., Carvalho J.C.M., Converti A., Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005, 243(1), 217-24Google Scholar

  • Tan X.B., Zhang Y.L., Yang L.B., Chu H.Q., Guo J., Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresour. Technol., 2016, 200, 606-615Web of ScienceGoogle Scholar

  • Taussky H., Shorr E., A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem., 1953, 202(2), 675-685Google Scholar

  • Wang L., Min M., Li Y., Chen P., Chen Y., Liu Y., et al., Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol., 2010, 162(4), 1174-1186Web of ScienceGoogle Scholar

  • Wellburn A.R., The spectral determination of Chlorophylls a and b, as well as Total Carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 1994, 144(3), 307-313Google Scholar

About the article

Received: 2016-12-15

Accepted: 2017-05-02

Published Online: 2017-08-18

Published in Print: 2017-02-23

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 394–400, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0042.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in