Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles

Mustafa Nadhim Owaid
  • Corresponding author
  • Deapartment of Heet Education, General Directorate of Education in Anbar, Ministry of Education, Hit, Anbar 31007, Iraq
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anson Barish / Mohammad Ali Shariati
Published Online: 2017-10-12 | DOI: https://doi.org/10.1515/opag-2017-0056


White button mushroom (Agaricus bisporus), Higher Basidiomycota, is a very important nutritional and medicinal species which is used for recycling agrowastes including wheat straw, reed plant wastes, waste paper, oat straw, waste tea leaves, some water plants and others. A. bisporus has many usages in human dietary and pharmaceutical fields due to its composition of essential amino acids, fatty acids, carbohydrates, low calories, crude fibers, trace elements and vitamins. Recently synthesized nanoparticles from A. bisporus were used to treat cancer, viral, bacterial and fungal diseases. The goal of this review is to highlight recent data about recycling wastes for Agaricus production and applications of A. bisporus as a reducing agent in the biosynthesis of silver nanoparticles. Organically produced foods are currently highly desirable, but it can also be used for ecofriendly biosynthesis of nanoparticles.

Keywords : agricultural wastes; compost; green chemistry; nanotechnology; biotechnology


  • Aida F.M.N.A., Shuhaimi M., Yazid M., Maaruf A.G., Mushroom as a potential source of prebiotics: a review. Trends Food Sci. Tech., 2009, 20, 567-575CrossrefGoogle Scholar

  • Al-Bahadli A.H., Al-Zahron H.H., The basics of fungus production (mushroom). Dar Al-Hikma for printing and publishing. Baghdad University. Iraq, 1991Google Scholar

  • Alispahic A., Sapcanin A., Salihovic M., Ramic E., Dedic A., Pazalja M., Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bulletin of the Chemists and Technologist of Bosnia and Herzegovina, 2015, 44, 5-8Google Scholar

  • Alkaisi M.R.M, Hasan A.A., Aljuboori A.W.A., Evaluation of production efficiency for some cultivated mushroom strains Agaricus bisporus which was renovated Mother Culture in multiple methods. Iraqi Journal of Science, 2016, 57(1B), 383-390Google Scholar

  • Andrade M.C.N., de Jesus J.P.F., Vieira F.R., Viana S.R.F., Spoto M.H.F., Minhoni M.T.A., Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains. Braz. J. Microbio., 2013, 44(4), 1139-1146Google Scholar

  • Andrade M.C.N., Zied D.C., Minhoni M.T.A., Filho J.K., Yield of four Agaricus bisporus strains in three compost formulations and chemical composition analyses of the mushrooms. Brazilian Journal of Microbiology, 2008, 39, 593-598Google Scholar

  • Bahl N., Medicinal value of edible fungi. In: Proceeding of the International Conference on Science and Cultivation Technology of Edible Fungi. Indian Mushroom Science II, 1983, 203-209Google Scholar

  • Barros L., Ferreira M-J., Queiros B., Ferreira I.C.F.R., Baptista P., Total phenols, ascorbic acid, a-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 2007, 103, 314-419Google Scholar

  • Baysal E., Yigitbasi O.N., Colak M., Toker H., Simsek H., Yilmaz F., Cultivation of Agaricus bisporus on some compost formulas and locally available casing materials. part 1: wheat straw based compost formulas and locally available casing materials. Afr. J. Biotechnol., 2007, 6(1), 2225-2230Google Scholar

  • Bernas E., Jaworska G., Kmiecik W., Storage and processing of edible mushrooms. Acta Sci. Pol. Technol. Aliment., 2006, 5(2), 5-23Google Scholar

  • Beyer D.M., Basic procedures for Agaricus mushroom growing. Penn State College of Agricultural Sciences Research, Extension, and Resident Education Programs, Pennsylvania, Cheste, 2003Google Scholar

  • Bonnen A.M., Anton L.H., Orth A.B., Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. App. Environ. Micro., 1994, 60(3), 960-965Google Scholar

  • Breene W.M., Nutritional and medicinal value of specialty mushroom. J. Food Protect., 1990, 53, 883-894Google Scholar

  • Chang S.-T., Miles P.G., Mushrooms cultivation, nutritional value, medicinal effect and enviromental impact, 2nd Ed. CRC Press LLC. USA, 2004Google Scholar

  • Chen R., Chen L., Song S., Identification of two thermotplerancerelated genes in Agaricus bisporus. Food Technol. Biotechnol., 2003, 41(4), 339-344Google Scholar

  • Colak M., Baysal E., Simsek H., Toker H., Yilmaz F., Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials part 3: dry matter, protein and carbohydrate contents of Agaricus bisporus. Afr. J. Biotechnol., 2007, 6(24), 2855-2859CrossrefGoogle Scholar

  • Dhamodharan G., Mirunalini S., A novel medicinal characterization of Agaricus bisporus (white button mushroom). Pharmacologyonline, 2010, 2, 456-463Google Scholar

  • Dhamodharan G., Mirunalini S., Dose response study of Agaricus bisporus (white button mushroom) and its encapsulated chitosan nanoparticles against 7,12 dimethylbenz(a)anthracene induced mammary carcinogenesis in female sprague-dawley rats. Int. J. Pharm. Sci., 2012, 4(4), 348-354Google Scholar

  • Dhamodharan G., Mirunalini S.A., Detail study of phytochemical screening, antioxidant potential and acute toxicity of Agaricus bisporus extract and its chitosan loaded nanoparticles. Journal of Pharmacy Research, 2013, 6(8), 818-822Google Scholar

  • Dhanasekaran D., Latha S., Saha S., Thajuddin N., Panneerselvam A., Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus. J. Experim. Nanosci., 2013, 8(4), 579-588Google Scholar

  • Dubost N.J., Beelman R.P., Peterson D., Royse D.J., Identification and quantification of ergothioneine in cultivated mushroom by liquid chromatography-mass spectroscopy. Int. J. Med. Mushr., 2006, 8(3), 215-222Google Scholar

  • Eskandari-Nojedehi M., Jafarizadeh-Malmiri H., Rahbar-Shahrouz J., Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity. Nanotech Rev., 2016, 5(6), 530-537Google Scholar

  • Eskandari-Nojedehi M., Jafarizadeh-Malmiri H., Rahbar-Shahrouzi J., Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physicochemical characteristics and antifungal activity studies. Green Processing and Synthesis, (Online), 2017, Doi:10.1515/gps-2017-0004CrossrefGoogle Scholar

  • Flores C., Vidal C., Trejo-Hernandez M.R., Galindo E., Serrano- Carreon L., Selection of Trichoderma strains capable of increasing Laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. J. Appl. Microbiol., 2009, 106, 249-257Google Scholar

  • Goyal R., Grewal R.B., Goyal R.K., Fatty acid composition and dietary fibre constituents of mushrooms of North India. Emirates Journal of Food and Agriculture, 2015, 27(12), 927-930Google Scholar

  • Grube B.J., Eng E.T., Kao Y.C., Kwon A., Chen S., White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J. Nutr., 2001, 131, 3288-3293Google Scholar

  • Gulser C., Peksen A., Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresou Technol., 2003, 88, 153-15.Google Scholar

  • Halpern G.M., Healing Mushrooms. Squareone Publishers. USA, 2006, pp. 182Google Scholar

  • Heleno S.A., Barros L., Sousa M.J., Martins A., Ferreira I.C.F.R., Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem., 2010, 119, 1443-1450Google Scholar

  • Hou H., Zhou J., Wang J., Du C., Yan B., Enhancement of Laccase production by Pleurotus ostreatus and its use for the decolorization of Antraquinone dye. Proc. Biochem., 2004, 39, 1415-1419Google Scholar

  • Irazoqui, F.J., Zalazar, F.E., Nores, G.A., Vides, M.A., Agaricus bisporus lectin binds mainly Oglycans but also N-glycans of human IgA subclasses. Glycoconjugate J., 1997, 14, 313-319CrossrefGoogle Scholar

  • Jain N., Karaiya H., Amrita K., Tiwari S., Dubey V., Ramalingam C., Evaluation of Antibacterial properties of the suspension of Ginger, Black Pepper, Vinegar, Honey and its application in Shelf life extension of Agaricus bisporus. Int. J. Drug Dev. Res., 2013, 5(2), 179-186Google Scholar

  • Javan A.J., Nikmanesh A., Keykhosravy K., Maftoon S., Zare M.A., Bayani M., Parsaiemehr M., Raeisi M., Effect of citric acid dipping treatment on bioactive components and antioxidant properties of sliced button mushroom (Agaricus bisporus). Journal of Food Quality and Hazards Control, 2015, 2, 20-25Google Scholar

  • Majumder P., Nanoparticle-assisted herbal synergism an effective therapeutic approach for the targeted treatment of breast cancer: a novel prospective. Glob. J. Nanomed., 2017, 2(4), 555595Google Scholar

  • Mattila P., Salo-Vaananen P., Konko K., Aro H., Jalava T., Basic composition and amino acid contents of mushrooms cultivated in Finland. J. Agri. Food Chem., 2002, 50, 6419-6422CrossrefGoogle Scholar

  • MC., Mushrooms Canada. Health Sheet. Published by Data of Mushrooms Canada. Canada, 2007, 1-3Google Scholar

  • Muslat M.M., Al-Assaffii I.A.A., Alheeti M.N.O., Use Efficiency of Reed Residues Phragmites australis with Amendment by Streptomyces O3 to Prepared Compost for Agaricus bisporus Production and Influence of Spraying Glycyrrhiza sp. extracts. Research Journal of Aleppo University. Agricultural Science Series, 2011, 93, 149-168Google Scholar

  • Muslat M.M., Al-Assaffii I.A.A., Owaid M.N., Agaricus bisporus product development by using local substrate with bio-amendment. Int J Enviro Global Climate, 2014, 2(4), 176-188Google Scholar

  • Muszynska B., Krakowska A., Sułkowska-Ziaja K., Opoka W., Reczynski W., Bas B. In vitro cultures and fruiting bodies of culinary-medicinal Agaricus bisporus (white button mushroom) as a source of selected biologically-active elements. J. Food Sci. Technol., 2015, 52(11), 7337-7344Google Scholar

  • Narasimha G., Papaiah S., Praveen B., Sridevi A., Mallikarjuna K., Raju B D P., Fungicidal activity of silver nanoparticles synthesized by Agaricus bisporus (White Button Mushrooms). Nano Science and Nano Technology, 2013, 7(3), 114-115.Google Scholar

  • Owaid M.N., Biotechnology for local compost preparation used to produce mushroom Agaricus bisporus. M.Sc. thesis. Biology Dept., College of Science, University of Anbar, Iraq, 2009, 129 pp.Google Scholar

  • Owaid M.N., Ibraheem I.J., Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed., 2017, 9(1), 5-23Google Scholar

  • Owaid M.N., Mineral elements content in two sources of Agaricus bisporus in Iraqi market. J. Advanced App. Sci., 2015, 3(2), 46-50Google Scholar

  • Owaid M.N., Muslat M.M., Abed I.A., Cultivation of Agaricus bisporus X25 on reed plant (Phragmites australis) straw decomposed by using Actinomycetes. Hacettepe Journal of Biology and Chemistry, 2017, 45(2), 205-212Google Scholar

  • Peker H., Baysal E., Yigitbasi O.N., Simsek H., Colak M., Toker H., Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based compost formulas using wheat chaff as activator material. Afr. J. Biotech., 2007, 6(4), 400-409Google Scholar

  • Praveen N.G., Mallikarjuna K., Raju D.P., Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. Int J Nano Dim, 2011, 2(1), 29-36Google Scholar

  • Reddy M.T.N., Reddy K.A.K., Reddy K.A., Reddi E.U.B., Reddi B., A study on the production of Agaricus bisporus mushrooms using Eichhornia crassipes (mart. Solms) - a troublesome exotic aquatic weed of kolleru lake. IJSN, 2013, 4(1), 100-103Google Scholar

  • Rehman M.K., Ali M.A., Hussain A., Khan W.A., Khan A.M., Effect of different casing materials on the production of button mushroom (Agaricus bisporus L.). Journal of Environmental & Agricultural Science, 2016, 7, 55-61Google Scholar

  • Ren Z., Guo Z., Meydani S., Wu D., White button mushroom enhances maturation of bone marrow derived dendritic cells and their antigen presenting function in mice. J. Nutr., 2008, 138, 544-550Google Scholar

  • Roberts J.S., Teichert A., Mc Hugh T.H., Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J. Agaric Food Chem., 2008, 56, 4541-4544CrossrefGoogle Scholar

  • Sadler M., Nutritional properties of edible fungi. British Nutrition Foundation Nutrition Bulletin, 2003, 28, 305-308CrossrefGoogle Scholar

  • Safwat M.S.A, Al Kholi M.A.J., Recent trends, reality and future in the production, manufacture and marketing of medicinal and aromatic plants. The Egyptian Association for producers, manufacturers and exporters of medicinal and aromatic plants (Asmap.), Giza, Egypt, 2006Google Scholar

  • Sakae H., Yutaka T., Minoru T., Mushroom cultivation using compost produced in the garbage automatic decompose-extinguisher (GADE). Eurasian J. For. Res., 2006, 9(2), 61-67Google Scholar

  • Sarkar J., Roy S K., Laskar A., Chattopadhyay D., Acharya K., Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quel. Mater Lett., 2013, 92, 313-316CrossrefGoogle Scholar

  • Sassine Y.N., Abdel-Mawgoud A.M.R., Ghora Y., Bohme M., Effect of different mixtures with waste paper as casing soil on the growth and production of mushroom (Agaricus bisporus). Aus. J. Basic App. Sci., 2007, 1(2), 96-104Google Scholar

  • Sassine Y.N., Ghora Y., Kharrat M., Bohme M., Abdel-Mawgoud A.M.R., Waste paper as an alternative for casing soil in mushroom (Agaricus bisporus) production. J App Sci Res, 2005, 1(3), 277-284Google Scholar

  • Schmidt O., Wood and tree fungi, biology, damage, protection and use. Springer. Germany, 2006, pp. 334Google Scholar

  • Senapati U S, Jha D K, Sarkar D., Structural, optical, thermal and electrical properties of fungus guided biosynthesized zinc sulphide nanoparticles. Res. J. Chem. Sci., 2015, 5(1), 33-40Google Scholar

  • Simsek H., Baysal E., Colak M., Toker H., Yilmaz F., Yield response of mushroom (Agaricus bisporus) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials. Afr. J. Biotechnol., 2008, 7(2), 088-094Google Scholar

  • Sudhakar T., Nanda A., Babu S.G., Janani S., Evans M.D., Markose T.K., Synthesis of silver nanoparticles from edible mushroom and Its antimicrobial activity against human pathogens. Int J Pharm Tech Research, 2014, 6(5), 1718-1723Google Scholar

  • Sujatha S., Tamilselvi S., Subha K., Panneerselvam A., Studies on biosynthesis of silver nanoparticles using mushroom. Int J Curr Microbiol App Sci, 2013, 2(12), 605-614Google Scholar

  • Tsai S.-Y., Wu T.-P., Huang S.-J., Mau J.-L., Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem, 2007, 103, 1457-1464Google Scholar

  • Tseng Y.-H., Mau J.-L., Contents of sugars, free amino acids and free 5’-nucleotides in mushrooms, Agaricus bisporus, during post-harvest storage. J Sci Food Agric, 1999, 79(11), 1519-1523CrossrefGoogle Scholar

  • Ul-Haq M., Rathod V., Singh D., Singh A.K., Ninganagouda S., Hiremath J., Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora district (Jammu and Kashmir) and their efficacy against Methicillin Resistant Staphylococcus aureus (MRSA) strains. Nanoscience and Nanotechnology: An Int J, 2015, 5(1), 1-8Google Scholar

  • USDA, United States Department of Agriculture. Mushrooms. National Agricultural Statistics Service, 2016, p. 1-18Google Scholar

  • Vetter J., Hajdu C.S., Gyorfi J., Maszlaver P., Mineral composition of the cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Acta Alimentaria, 2005, 34(4), 441-451CrossrefGoogle Scholar

About the article

Received: 2016-06-10

Accepted: 2017-08-27

Published Online: 2017-10-12

Published in Print: 2017-10-26

Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 537–543, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0056.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in