Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil (Ocimum basilicum L.)

Omer Caliskan / Dursun Kurt / Kadir Ersin Temizel
  • Ondokuz Mayıs University, Department of Agricultural Structures and Irrigation, 55100 Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehmet Serhat Odabas
Published Online: 2017-11-16 | DOI: https://doi.org/10.1515/opag-2017-0062

Abstract

This study was conducted to assess the influence of different salinity and irrigation water treatments on the growth and development of sweet basil (Ocimum basilicum L.). Five salinity levels (0.4, 1.00, 2.50, 4.00 and 8.00 dSm-1) and three different irrigation water regimes (80, 100, 120% of full irrigation) were applied in a factorial design with three replications. Dry root weight, aerial part dry weight and aerial part/root ratio were determined and evaluated as experimental parameters at the end of growing period. Results revealed significant decreases in yields with increasing salinity levels. However, basil managed to survive high salt stress. With increasing salinity levels, decreases in growth were higher in roots than in leaves. Changes in the amount of irrigation water also significantly affected the evaluated parameters.

Keywords : Salinity; water deficiency; yield

References

  • Attia H., Ouhibi C., Ellili A., Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiol Plant. Published Online, 2010, 33(3), 823-833CrossrefGoogle Scholar

  • Baritaux O., Richard H., Touche J., Derbesy M., Effects of drying and storage of herbs and spices on the essential oil. Part I. Basil, Ocimum basilicum L. Flavour and fragrance, J., 1992, 7, 267-271Google Scholar

  • Bertoli A., Cirak C., Leonardi M., Seyis F., Pistelli L., Morphogenetic changes in essential oil composition of Hypericum perforatum during the course of ontogenesis. Pharmaceutical Biology., 2011, 49(7), 741-751CrossrefWeb of ScienceGoogle Scholar

  • Bertoli A., Cirak C., Seyis F., Hypericum origanifolium Willd.: The essential oil composition of a new valuable species. Industrial Crops and Products, 2015, 77, 676-679Google Scholar

  • Camas N., Radusiene J., Ivanauskas L., Jakstas V., Cirak C., Altitudinal changes in the content of bioactive substances in Hypericum orientale and Hypericum pallens. Acta Physiologia Plantarum, 2014, 36, 675-686Google Scholar

  • Bray E.A., Bailey-Serres J., Weretinlnyk E., Responses to a biotic stresses, in: W.Gruissem, B.Buchannan,R.Jones (Eds),Biochemistry and molecular biology of plants. America Society of Plant Physiologists, Rockville, 2000, pp. 1158-1249Google Scholar

  • Chiang L.C., Cheng P.W., Chiang W., Lin. C.C., Antiviral activity of extracts and selected pure constituents of Ocimum basilicum. Cli. Exp. Pharmacol. Physiol., 2005, 32, 811-816Google Scholar

  • Cirak C., Radusiene J., Aksoy H.M., Mackinaite R., Stanius Z., Camas N., Odabas M.S., Differential Phenolic Accumulation in two Hypericum Species in response to Inoculation with Diploceras hypericinum and Pseudomonas putida. Plant Protection Sciences, 2014, 50(3), 119-128Google Scholar

  • Cirak C., Radusiene J., Stanius Z., Camas N., Caliskan O., Odabas M.S., Secondary metabolites of Hypericum orientale L. growing in Turkey: variation among populations and plant parts. Acta Physiologia Plantarum, 2012, 34, 1313-1320CrossrefGoogle Scholar

  • Cirak C., Bertoli A., Aromatic profiling of wild and rare species growing in Turkey: Hypericum aviculariifolium Jaub. and Spach subsp. depilatum (Freyn and Bornm.) Robson var. depilatum and Hypericum pruinatum Boiss. and Bal. Natural Product Research, 2013, 27 (2), 100-107Google Scholar

  • Copeman R.H., Martin C.A., Stutz J.C., Tomato growth in response to salinity and mycorrhizal fungi from saline or non-saline soils. Hortscience, 1996, 31(3), 341-344Google Scholar

  • Flowers T.J., Flowers S.A., Why does salinity pose such a difficult problem for plant breeders. Agricultural Water Management, 2005, 78,15-24CrossrefGoogle Scholar

  • Khatri L.M., Nasir M.K.A., Saleem R., Noor F., Evaluation of Pakistani sweet basil oil for commercial exploition. Pakistan J. Sci. Ind. Res., 1995, 38, 281-282Google Scholar

  • Lauchli A., Epstein E., Plant responses to saline and sodic conditions. In K.K. Tanji (ed). Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice, ASCE New York, 1990, 71, 113-137Google Scholar

  • Lawrence B.M., Labiatae oils - Mother Nature’s chemical factory. In: Essential Oils. Allured Publishing, Carol Stream, IL., 1993, pp. 188-206Google Scholar

  • La-Chowicz K.J., Jones G.P., Briggs D.R., Bienvenu F.E., Palmer M.V., Ting S.S.T., Hunter M., Characteristics of essential oil from basil (Ocimum basilicum L.) grown in Australia. J. Agri. Food Chem., 1996, 44, 877-881Google Scholar

  • Machale K.W., Niranjan K., Pangarkar V.G., Recovery of dissolved essential oil from condensate waters of basil and Mentha arvensis distillation. J. Chem. Tech. Biotech., 1997, 69, 362-366Google Scholar

  • Marschner H., Romheld V., Strategies of plants for acquisition of iron. Plant Soil, 1994, 165, 375-388Google Scholar

  • Meiri A., Shahavet J., Salinity and Irrigation Arid Zone Irrigation Springer, New York, 1973, pp. 277-291Google Scholar

  • Morales C., Cusido R.M., Palazon J., Bonfill M. Tolerance of mint plants to soil salinity. J. Indian Soc. Soil Sci., 1993, 44(1),184-186Google Scholar

  • Orsini F., Maggio A., Orsini, Francesco Unravelling salt stress tolerance: physiological, morphological and genetic components in crop species and model plants. 2008, [Tesi di dottorato] (Inedito) http://www.fedoa.unina.it/2011/Google Scholar

  • Ozcan M., Chalchat J.C., Essential oil composition of Ocimum basilicum L. and Ocimum minimum L. in Turkey. Czech J. Food Sci., 2002, 20, 223-2280Google Scholar

  • Page A.L., Chang A.C., Adriano D.C., Agricultural salinity assessment stresses and management deficiencies and toxicities of trace elements, in: tanj, K.K. (Eds), Manuals and Reports on Eng. 1990, Practice No.71, New York, pp. 138-160Google Scholar

  • Ramin A.A., Effects of Salinity and Temperature on Germination and Seedling Establishment of Sweet Basil (Ocimum basilicum L.), Journal of Herbs, Spices & Medicinal Plants, 2006, 11(4), 81-90Google Scholar

  • Rhoades J.D., Drainage for salinity control. In: Drainage for agriculture. (Ed.): J. Van Schilfgarde. ASA Monograph no. 17, Amer. Soc. Agronomy, Madison, Wis., 1974, 433-467Google Scholar

  • Said-Al Ahl H.A.H, Meawad A.A., Abou-Zeid E.N., Ali M.S. Response of different basil varieties to soil salinity. Int. Agrophysics, 2010, 24, 183-188Google Scholar

  • Said-Al Ahl H.A.H., Mahmoud A.A. Effect of zinc and / or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stres. Ozean Journal of Applied Sciences, 2010, 3(1), 97-111Google Scholar

  • Sajjadi S.E., Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. Daru, 2006, 4(3), 128-130Google Scholar

  • Shao H.B., Chu L.Y., Jaleel C.A., Water-deficiet stress-induced anatomical changes in higher plants, C.R.Biologies, 2008, 331(3), 215-225Google Scholar

  • Tanji, K.K. Nature and extent of agricultural salinity. Agricultural Salinity Assessment and Management. ASCE Manuals and Reports on Engineering Practice No.71, American Society of Civil Eng., New York, 1990, 1-17Google Scholar

  • Van de Graaff, R., Patterson R.A. Explaining the mysteries of salinity, sodicity, SAR and ESP in on-site practice. Proc. of On-site ’01 Conference: Advancing On-site Wastewater Systems (Patterson, P.A. and Jones, M.J. (eds). Lanfax Laboratories, Armidale. 2001, pp. 36 -368Google Scholar

  • Woodward F.I., Lake J.A., Quick W.P., Stomatal development and CO2: ecological consequences. New Phytologyst, 2002, 153(3), 477-484Google Scholar

  • Wu G., Zhang C., Chu L.Y., Shao H.B., Responses of higher plants to a biotic stress an agricultural sustainable development. J. Plant Interactions, 2007, 2(3), 135-147Google Scholar

  • Yao, L., Takano T., Suzuki S. Effects of salt stress on growth, water relation and essential oil content of basil leaves. Journal of Shanghai Agricultural College, 2000, 18(2), 77-84Google Scholar

  • Yildirim E., Taylor A.G., Effect of biological treatments on growth of bean plants under salt stress. Annual Report of the Bean Improvement Cooperative, March 2005, 48, 176-177Google Scholar

  • Yurtseven E., Unlukara A., Top A., Tek A., Effect of salinity and irrigation interval on yield and vegetative growth of kolza (Brassica napus oleifera). First National Irrigation Congress, 8-11 November 2001, Antalya, TurkeyGoogle Scholar

About the article

Received: 2017-06-24

Accepted: 2017-10-07

Published Online: 2017-11-16

Published in Print: 2017-11-27


Citation Information: Open Agriculture, Volume 2, Issue 1, Pages 589–594, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2017-0062.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in