Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Genotype X Environment Interaction for Yield of Pickling Cucumber in 24 U.S. Environments

Mahendra Dia
  • Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Todd C. Wehner
  • Corresponding author
  • Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, Raleigh, NC 27695, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gary W. Elmstrom / August Gabert / James E. Motes / Jack E. Staub / Greg E. Tolla / Irvin E. Widders
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/opag-2018-0001

Abstract

Reliable yield performance is important in cucumber because seed companies prefer to market cultivars adapted to multiple rather than single regions of the U.S. Also, growers benefit by using a cultivar that performs well in many environments. Future performance of cultivars is also important. The objectives of the study were to (i) evaluate the yield of cucumber genotypes over successive years and in different locations, and (ii) identify cucumber genotypes with high stability for yield. A diverse set of 22 pickling genotypes was evaluated over 3 years (1986, 1987 and 1988) and in 7 locations across the United States. Yield traits were evaluated using once-over harvest and counting the number of fruit that were marketable, culled or oversize. Total yield, marketable yield (total minus culled fruit), early yield (number of oversize fruit), percent culls and fruit per plant were calculated. Data were analyzed with SASGxE and RGxE programs using SAS and R programming languages, respectively. There were strong effects of environment(E) as well as genotype(G) xE interaction for all traits. Genotypes ‘Regal F1’, ‘Calypso F1’, ‘Carolina F1’, ‘Gy 3’, ‘Gy 14’ and ‘Fremont F1’ had high marketable yield and medium to high stability for all traits. There was an advantage of hybrids over inbreds for trait performance. Hybrids fell into a single cluster with large prediction intervals. Based on the stability statistics and divisive clusters, it appears possible to breed stable cucumber genotypes with high yield. The genotype with highest performance for marketable yield, greatest stability for yield, lowest 1-R2 ratio value (diverse and representative) were ‘Marbel F1’ and Gy 14.

Keywords : Cucumis sativus; single-harvest trials; variety testing; vegetable breeding

References

  • Alghamdi S.S., Yield stability of some soybean genotypes across diverse environment. Pak. J. Bio. Sci., 2004, 7(12), 2109-2114Google Scholar

  • Annicchiarico P., Joint regression vs. AMMI analysis of genotypeenvironment interactions for cereals in Italy. Euphytica, 1997, 94, 53-62CrossrefGoogle Scholar

  • Bates D., Maechler M., Bolker B., Walker S., Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 2015, 67(1), 1-48, doi:CrossrefGoogle Scholar

  • Bednarz C.W., Bridges D.C., Brown S.M. ,Analysis of Cotton Yield Stability Across Population Densities. Agron. J., 2000, 92, 128-135Google Scholar

  • Board J.E., Kahlon C.S., Soybean yield formation: what controls it and how it can be improved. In: El-Shemy, H.A.(Ed.), Soybean Physiology and Biochemistry. InTech, Croatia, 2011, pp. 1-36Google Scholar

  • Board J.E., Kahlon C.S., A proposed method for stress analysis and yield prediction in soybean using light interception and developmental timing. Crop Management, 2012, 11(1), doi:CrossrefGoogle Scholar

  • Board J.E., Kahlon C.S., Morphological responses to low plant population differ between soybean genotypes. Crop Science, 2012, 53(3), 1109-1119CrossrefGoogle Scholar

  • Casanoves F., Baldessari J., Balzarini M., Evaluation of multienvironment trials of peanut cultivars. Crop Science, 2005, 45, 18-26CrossrefGoogle Scholar

  • Chakroun M., Tliaferro C.M., McNew R.W., Genotype-Environment interactions for Bermuda Forage Yields. Crop Science, 1990, 30, 49-53Google Scholar

  • Comstock R.E., Moll R.H,. Genotype-environment interactions. In W.D. Hanson and H.F. Robinson (ed.) Statistical genetics and plant breeding. National Academy of Sciences-National Research Council Publ. 982. NAS-NRC, Washington, DC., 1963, p. 164-196Google Scholar

  • Crossa J., Gauch H.G., Zobel R.W., Additive main effects and multiplicative interaction analysis of two maize cultivar trials. Crop Science, 1990, 30, 493-500CrossrefGoogle Scholar

  • Dia M., Plant Stand and Nitrogen Management for Maximisation of Yield and Quality of Baby Corn, M.S thesis, Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad, 2005Google Scholar

  • Dia M., Genotype x Environment Interaction and Stability Analysis of Performance, and Mega-Environment Identification of Fruit Yield and Yield Components in Watermelon [Citrullus lanatus (Thumb.)Google Scholar

  • Matsum & Nakai] Tested in Multiple US Locations. Ph.D. diss. North Carolina State University, Raleigh, 2012aGoogle Scholar

  • Dia M., Wehner T.C., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Genotype x environment interaction and stability analysis for watermelon fruit yield in the U.S.. Crop Science, 2016a, 56, 1645-1661, doi:CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Values of locations for representing mega-environments and for discriminating yield of watermelon in the U.S. Crop Science, 2016b, 56, 1726-1735, doi:CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Arellano C., Analysis of genotype x environment interaction (GxE) using SAS programming. Agron. J., 2016c, 108(5), 1-15, doi:CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Perkins-Veazie P., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Bernier J., Juarez B., Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments. Horticulture Research, 2016d, 23, 16066, doi:CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Arellano C., RGxE: An R Program for Genotype x Environment Interaction Analysis. American Journal of Plant Sciences, 2017, 8:,1672-1698, doi:CrossrefGoogle Scholar

  • Dia M., Wehner T.C., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Bernier J., Juarez B., Sari N., Solmaz I., Aras V., Mega-environment identification for watermelon yield testing in the US. Cucurbitaceae 2012b. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Antalya, Turkey, 15-18 October, 2012. University of Cukurova, Ziraat Fakultesi, 2012, p. 385-390Google Scholar

  • Dia M., Wehner T.C., Hassell R., Price D.S., Boyhan G.E., Olson S., King S., Davis A.R., Tolla G.E., Bernier J., Juarez B., Sari N., Solmaz I., Aras V., Stability of fruit yield in watermelon genotypes tested in multiple US environments. Cucurbitaceae 2012c. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Antalya, Turkey, 15-18 October, 2012. University of Cukurova, Ziraat Fakultesi, 2012, p. 84-88Google Scholar

  • Dia M., Weindorf D., Thompson C., Cummings H., Cacovean H., Rusu T., Spatial distribution of heavy metals in the soils of Erath county, Texas. Studia Universitatis Babes-Bolyai, Geographia, 2009, 2, 99-114 Google Scholar

  • Dehghani H., Ebadi A., Yousefi A., Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron. J., 2006, 98, 388-393Google Scholar

  • Ebdon J.S., Gauch Jr. H.G., Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of Genotype 3 environment interaction. Crop Sci., 2002, 42, 489-496, doi:CrossrefGoogle Scholar

  • Eberhart S.A., Russell W.A., Stability parameters for comparing varieties. Crop Science, 1966, 6, 36-40 Google Scholar

  • Fan X.M., Kang M., Chen H., Zhang Y, Tan J., Xu C., Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J., 2007, 99, 220-228Google Scholar

  • Finlay K.W., Wilkinson G.N., The analysis of adaptation in a plant breeding programme. Austr. J., Agric. Res., 1963, 14, 742-754CrossrefGoogle Scholar

  • Freeman G.H., Statistical methods for the analysis of genotypeenvironment interactions. Heredity, 1973, 31, 339-354CrossrefGoogle Scholar

  • Frutos, E., Galindo M.P., Leiva V., An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environ. Res. Risk Assess., 2014, 28, 1629-1641, doi:CrossrefGoogle Scholar

  • Hughes G.R., Averre C.W., Sorensen K.A., Growing pickling cucumbers in North Carolina F1. N.C. Agric. Ext. Serv. AG-315, 1983Google Scholar

  • Jackson D.A., Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 1993, 74(8), 2204-2214Google Scholar

  • Jarquin D., Perez-Elizalde S., Burgueno J., Crossa J., A Hierarchical Bayesian Estimation Model for Multienvironment Plant Breeding Trials in Successive Years. Crop Sci., 2016, 56, 2260-2276, doi:CrossrefGoogle Scholar

  • Jat P. Serre M.L., Bayesian maximum entropy space/time estimation of surface water chloride in Maryland using river distances. Environmental Pollution, 2016, 219, 1148-1155, http://doi.org/10.1016/j.envpol.2016.09.020CrossrefGoogle Scholar

  • Kahlon C.S., Analysis of genetic improvement for soybean from 1950-2000. PhD thesis, Louisiana State University, Baton Rouge, 2010Google Scholar

  • Kahlon C.S., Board J.E., Kang M.S., An analysis of yield component changes for new vs. old soybean cultivars. Agron. J., 2011, 102, 13-22Google Scholar

  • Kahlon C.S., Board J.E., Growth dynamic factors explaining yield improvement in new versus old soybean cultivars. J. Crop Improv., 2012, 26(2), 282-299Google Scholar

  • Kandus M., Almorza D., Ronceros R.B., Salerno J.C., Statistical models for evaluating the genotype-environment interaction in maize (Zea mays L.). Phyton., 2010, 79, 39-46Google Scholar

  • Kang M.S., Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J., 1993, 85, 754-757Google Scholar

  • Kumar R., Dia M., Wehner T.C., Implications of mating behavior in watermelon breeding. Hort. Science, 2013, 48(8), 960-964Google Scholar

  • Li Y., Gibson J.M., Jat P., Puggioni G., Hasan M., West J.J., Vizuete W., Sexton K., Serre M., Burden of diseases attributed to anthropogenic air pollution in the United Arab Emirates: estimates based on observed air quality data. Science of the total environment, 2010, 408(23), 5784-5793, http://doi.org/10.1016/j.scitotenv.2010.08.017CrossrefGoogle Scholar

  • Magari R. Kang M.S., Genotype selection via a new yield stability statistic in maize yield trials. Euphytica, 1993, 70, 105-111Google Scholar

  • Malosetti M., Voltas J., Romagosa I., Ullrich S.E., van Eeuwijk F.A., Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica, 2004, 137, 139-145, doi:CrossrefGoogle Scholar

  • Mathews K.L., Malosetti M., Chapman S., McIntyre L., Reynolds M., Shorter R., van Eeuwijk F.A., Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor. Appl. Genet., 2008, 117, 1077-1091, doi:CrossrefGoogle Scholar

  • Mekbib F. ,Yield stability in common beans (Phaseolus vulgaris L.) genotypes. Euphytica, 2003, 130, 147-153Google Scholar

  • Miranda G.V., De Souza L.V., Guimaraes L.J.M., Namorato H., Oliveira L.R., Soares M.O., Multivariate analysis of genotype x environment interaction of popcorn. Pesp. Agropec. Bras., Brasilia, 2009, 44, 45-50Google Scholar

  • Mohan M., Sliva C.A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A.T., Dia M., Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests, 2017, 8(9), 340, doi:CrossrefGoogle Scholar

  • Mulema J.M.K., Adipala E., Olanya O.M., Wagoire W., Yield stability analysis of late blight resistant potato selections. Experimental Agriculture, 2008, 44, 145-155Google Scholar

  • Nachit M.M., Sorrells M.E., Zobel R.W., Gauch H.G., Fischer R.A., Coffman W.R., Association of environmental variables with sites’ mean grain yield and components of genotype-environment interaction in durum wheat. Journal of Genetics and Breeding, 1992, 46, 369-372Google Scholar

  • Panthee D.R., Cao C., Debenport S.J., Rodriguez G.R., Labate J.A., Robertson L.D., Breksa III A.P., Knaap E.V.D., Gardner B.B.M., Magnitude of genotype x environment interactions affecting tomato fruit quality. HortScience, 2012, 47(6), 721-726Google Scholar

  • R Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 30 Dec. 2016)Google Scholar

  • Riday H., Brummer E.C., Persistence and Yield Stability of Intersubspecific Alfalfa Hybrids. Crop Science, 2006, 46, 1058-1063CrossrefGoogle Scholar

  • RStudio Team. 2014. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA (Computer Software v0.98.1074). http://www.rstudio.com/ Google Scholar

  • SAS Institute. 2016. SAS/STAT 9.2 User’s Guide, Second Edition: PROC VARCLUS Statement. https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_varclus_sect004.htm (accessed 30 Dec. 2016)Google Scholar

  • Shukla G.K., Some statistical aspects of partitioning genotypeenvironmental components of variability. Heredity, 1972, 29, 237-245 CrossrefGoogle Scholar

  • Vita P. De., Mastrangeloa A.M., Matteua L., Mazzucotellib E., Virzi N., Palumboc M., Lo Stortod M., Rizzab F., Cattivelli L., Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crop Res., 2010, 119, 68-77Google Scholar

  • Wehner T.C., Lower R.L., Staub J.E., Tolla G.E., Convergent-divergent selection for cucumber fruit yield. HortScience, 1989, 24 (4), 667-669Google Scholar

  • Weindorf D.C., Sarkar R., Dia M., Wang H., Chang Q., Haggard B., McWhirt A., Wooten A., Correlation of X-ray fluorescence spectrometry and inductively coupled plasma atomic emission spectroscopy for elemental determination in composted products. Compost science & utilization, 2008a, 16(2), 79-82, http://dx.doi.org/10.1080/1065657X.2008.10702361CrossrefGoogle Scholar

  • Weindorf D., Rinard B., Zhu Y., Johnson S., Haggard B., McPherson J., Dia M., Spinks C., McWhirt A., High Resolution Soil Survey of Capulin Volcano National Monument, New Mexico. Soil Horizons, 2008b, 49(3), 55-62, doi:CrossrefGoogle Scholar

  • Winter B., Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499, 2013, [http://arxiv.org/pdf/1308.5499.pdf]Google Scholar

  • Yan W., GGEbiplot: A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J., 2001, 93, 1111-1118Google Scholar

  • Yan W., Hunt L.A., Sheng Q., Szlavnics Z., Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science, 2000, 40, 597-605CrossrefGoogle Scholar

  • Yan W., Kang M.S., GGE Biplot analysis: A graphical analysis of multienvironment trial data and other types of two-way data. Agron. J., 2003, 93, 1111-1118Google Scholar

  • Zobel R.W., Wright M.J., Gauch Jr H.G., Statistical analysis of a yield trial. Agron. J., 1988, 80, 388-393Google Scholar

About the article

Received: 2017-08-31

Accepted: 2017-12-06

Published Online: 2018-02-02


Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 1–16, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0001.

Export Citation

© 2018 Mahendra Dia, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in