Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Challenges in Implementing Emission Mitigation Technologies in Indonesia Agricultural Sector: Criticizing the Available Mitigation Technologies

Marissa Malahayati / Toshihiko Masui
Published Online: 2018-03-24 | DOI: https://doi.org/10.1515/opag-2018-0006

Abstract

Reduction of Green House Gas (GHG) emissions in the agricultural sector is the main target for reducing non-CO2 emissions. In Indonesia, the agricultural sector is the third largest GHG emitter, far behind that from Land Use Change and Forestry (LUCF) and the energy sector. However, the agricultural sector is the biggest contributor of non-CO2 emissions and is also the most vulnerable sector to climate change. The Indonesian government is committed to reduce total emission inform current levels by 29% by 2030 under Nationally Determined Contribution (NDC). This will require reductions in emissions from all sectors including agriculture. Several mitigation technologies have been recommended by UNFCCC for implementation such as replacing urea with ammonium sulfate fertilizer; replacing nitrogen fertilizer with multicontent fertilizer; water irrigation management; replacing roughage with concentrate as livestock feed; and building biogas digesters. From our Computer General Equilibrium (CGE) simulation, if the focus of mitigation technology implementation in agriculture is to reduce non-CO2 emissions gases such as CH4 and N2O, then a comprehensive approach is needed. If the government implements the technology partially, we predict there will be a trade-off between CH4 and N2O emission. However, our simulation shows the loss to GDP caused by a new emission mitigation policy is very high even though Indonesia has invested for mitigation technology in agriculture. This is because we consider the additional investment needed will be costly and some technologies may not be suitable for implementation in Indonesia. In this research, we review current literature and examine each technology and its cost and compatibility with Indonesian situations in order to make policy recommendations for implementation by the Indonesia government.

Keywords: Agriculture; non-CO2 emission; emission mitigation

References

  • Indonesia Statistic Bureau, 2013, Sensus Pertanian 2013, https://st2013.bps.go.id/dev2/index.php/navigation/table, (in Indonesian)Google Scholar

  • Amberger A., Germann-Bauer M.P., Effect of the nitrification inhibitors 1-amidino-2-thiourea and dicyandiamide in combination with urea ad ammonium sufate, Fertilizer Research, 1990, 21, 179-183Google Scholar

  • Badan Intelejen Negara, 2012, Proyeksi Indonesia Menjadi Negara Maju dan Kuat 2030, http://www.bin.go.id/wawasan/detil/169/3/02/12/2012/proyeksi-indonesia-menjadi-negaramaju-dan-kuat-2030, (in Indonesian)Google Scholar

  • Bates J., Economic Evaluation of Emission Reductions of Nitrous Oxides and Methane in Agriculture in the EU, Evaluation Report, AEA Technology Environment and National Technical of Athens, Abingdon, 2001Google Scholar

  • Beauchemin K.A, M Kreuzer, O’ Mara F., McAllister T.A., Nutritional management for enteric methane abatement: A Review, Australian Journal of Experimental Agriculture, 2008, 48, 21-27Google Scholar

  • Burger M., Venterea R.T., Understanding Greenhouse Gas Emissions from Agricultural Management, Proceeding of ACS Symposium Series, American Chemical Society, 2011, 179-202Google Scholar

  • Ge .M., Friedrich J., Damassa T., 6 Graphs explain World top 10 emitters, 2014, http://www.wri.org/blog/2014/11/6-graphsexplain-world%E2%80%99s-top-10-emittersGoogle Scholar

  • Hamdani, Faruq A., Susanti N.E., Pengelolaan Penggunaan Saprodi dan Limbah Pertanian dalam Menjaga Sistem Keberlanjutan Pertanian di Kecamatan Poncokusumo, Kabupaten Malang, Proceeding of Seminar Nasional Hasil Penelitian Universitas Kanjuruhan Malang, 2016, 20-27, (in Indonesian)Google Scholar

  • Harjanti, Aprian R., Sistem Pengairan Intermittern pada Sistem Rice of Intensification (SRI) terhadap Pertumbuhan dan Hasil Padi (Oryza Sativa L), Seminar Paper, Yogyakarta, Universitas Gadjah Mada, 2012 (in Indonesian)Google Scholar

  • Hasegawa T., Yuzuru M., Climate Change Mitigation Strategies in agriculture and Land Use in Indonesia, Mitigation Adaptation Strategies Global Change, 2015, 20, 409-424Google Scholar

  • Hasyim, Pupuk Bersubsidi Langka di Abdya, 2017, http://aceh.tribunnews.com/2017/06/10/pupuk-bersubsidi-langka-diabdya, (in Indonesian)Google Scholar

  • Hildayanti S.K., Sriyati M.A., Nuni G., Rice Farmer Income Using Organic and Inorganic Fertilizer in East Ogan Komering Ulu (OKU), AGRISEP, 2013, 12(2), 195-208, (in Indonesian)Google Scholar

  • Indonesia Statistic Bureau, Struktur Ongkos Usaha Tanaman Padi, Jagung, dan Kedelai Jawa Tengah tahun 2014. Statistic Report, Semarang, BPS Provinsi Jawa Tengah, 2014 (In Indonesian)Google Scholar

  • Jia Y.Y., Wang S.Q., Ni Y.D., Zhang Y.S., Zhuang S., Shen X.Z., High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats. Animal, 2014, 8, 1433-1438Google Scholar

  • Linquist B.A., Adviento-Borbe M.A., Pittelkow C.M., van Kessel C., van Groenigen K.J., Fertilizer Management practices and Greenhouse gas from Rice System: A quantitative review and analysis, Field Crops Research, 2012, 135, 10-21Google Scholar

  • Malahayati M., Toshihiko M., Synchronising Ministry of Agriculture Target with Emission Mitigation Action Target: Case Study of Indonesia Towards 2030. Chemical Engineering Transaction Journal, 2017, 63, 2018, (in press)Google Scholar

  • Marpaung R., Estimating Economic Value of Water and Environmental Externalities in Application of Drip and Furrow Irrigations in the Dry Land Area of Pejarakan Village, Bali, Jurnal Sosial Ekonomi Kementerian Pekerjaan Umum, 2013, 65-75, (in Indonesian)Google Scholar

  • Ministry of Environment and Forestry, Indonesia First Biennial Update Report (BUR), Jakarta: Directorate General of Climate Change, Ministry of Environment and Forestry, 2015Google Scholar

  • Muller A., Bautze L., Meier M., Gattinger A., Gall E., Chatzinikolaou E., Meredith S., Ukas T., Ullmann L., Organic Farming, Climate Change Mitigation and Beyond: Reducing the Environmental Impacts of EU Agriculture, Brussels, IFOAM EU Group, 2016Google Scholar

  • Mulyadi W.A, Emisi Gas Rumah Kaca dan Hasil Gabah dari Tiga Varietas Padi pada Lahan Sawah Tadah Hujan Bersurjan, Penelitian Pertanian Tanaman Pangan, 2014, 33,116-121, (in Indonesian)Google Scholar

  • O’Mara F., Ryan M., Connolly J., O’Toole P., Carton O., Lenehan J.J, Lovett D., Hyde B., Jordan E., Hawkins M., Climate Change Estimation of Emissions of Greenhouse Gases for their Reduction, Research Report, Wexford, Environmental Protection Agency, 2007Google Scholar

  • Rayadie A., Irigasi Buruk Ribuan Hektar Lahan Pertanian Terancam Kekeringan, 2016, http://www.pikiran-rakyat.com/jawa-barat/2016/05/18/irigasi-buruk-ribuan-hektare-lahanpertanian-terancam-kekeringan-369440, (in Indonesian)Google Scholar

  • Rivai R.S., Analisa biaya air irigasi pada berbagai tipe irigasi di Kabupaten Nganjuk dan Ngawi, Propinsi Jawa Timur, Forum Penelitian Agro Ekonomi, 1993, 11(2), 14-23, (in Indonesian)Google Scholar

  • Saragih R., Jaringan Irigasi Rusak 800 ha Sawah Kekeringan di Kerinci, 2016, http://www.beritasatu.com/nasional/377688-jaringan-irigasi-rusak-800-ha-sawah-kekeringan-di-kerinci.html, (in Indonesian)Google Scholar

  • Schwab G., Ammonium Sulfate as a Nitrogen Source, Handout of University of Kentucky-College of Agriculture, 2002Google Scholar

  • Seno D.S.H., Nugroho Satya, Santoso Tri Joko, Sinaga Joel Rivandi, Marlina Euis, Adrianto Dimas, Munzirwan Rudi, Apriana Aniversari, Mas’ud Zainal Alim, 2014, Pengembangan Nontransgenik F1 dan Bc1f1 Padi Ciherang Toleran Genangan secara Site-Directed Crossing, Current Biochemistry, 2014, 1(3), 136-145Google Scholar

  • Setiawan D.S.R., Mentan: Biaya Perbaikan Saluran Irigasi Rp 21 Trilliun, 2013, http://ekonomi.kompas.com/read/2013/10/25/1908227/Mentan.Biaya.Perbaikan.Saluran.Irigasi.Rp.21.Triliun, (in Indonesian)Google Scholar

  • Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., et al., Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report, Cambridge: Cambridge University Press, 2007Google Scholar

  • Suryowati E., Irigari Rusak Indonesia Kehilangan Produksi Padi 4-5 juta Ton, 2015, http://nationalgeographic.co.id/berita/2015/01/irigasi-rusak-indonesia-kehilangan-produksipadi-4-5-juta-tonGoogle Scholar

  • Syadri M., 46 Persen Saluran Irigasi Rusak, Jawa Pos, 2017, https://www.jawapos.com/read/2017/05/24/132120/46-persensaluran-rusak-rehabilitasi-irigasi-genjot-produksi-pertanian, (in Indonesian)Google Scholar

  • Syamsiyah J.M., Pendampingan Petani dalam Pembuatan Pupuk Organik Berbahan Dasar Jerami di Desa Ketekan, Jogorogo, Ngawi. Proceeding in Seminar Nasional Peningkatan Kapabilitas UMKM dalam mewujudkan UMKM Naik Kelas, Surakarta, Universitas Negeri Sebelas Maret, 2016, 235-241, (in Indonesian)Google Scholar

  • Thaariq S.M.H., Pengaruh Pakan Hijauan dan Konsentrat terhadap Daya Cerna pada Sapi Aceh Jantan, Genta Mulia, 2017, 8(2), 78-89, (in Indonesian)Google Scholar

  • TRANSrisk Project, TRANSRisk Biogas Pathways in Indonesia, JIQ Magazine on Climate and Sustainability, 2016, http://transrisk-project.eu/sites/default/files/JIQ_Special_Nov2016_TRANSrisk_biogas_pathways_Indonesia.pdfGoogle Scholar

  • Tubiello F.N., Salvatore M., Golec R.D. Condor, Ferrara A, Rossi S., Biancalani R., Federici S., Jacobs H., Flammini A., 2014, Agriculture, Foresty, and Other Land Use Emission by Sources and Removals by Sinks, Working Paper,Rome, Food and Agriculture OrganizationGoogle Scholar

  • Virzinia D., Petani Lampung Barat Keluhkan Langkanya Pupuk Subsidi, 2017, https://kupastuntas.co/berita-daerah-lampung/barat/2017-07/petani-lampung-barat-keluhkan-langkanyapupuk-subsidi/, (in Indonesian)Google Scholar

  • Vorley B., Porras I., Amrein A., The Indonesia Domestic Biogas Programme: Can Carbon Financing Promote Sustainable Agriculture?, London: IIED and Hivos, 2015, Google Scholar

  • Wahyudi J., Kurnani Tb. Benito, Clancy Joy, Biogas Production in Dairy Farming in Indonesia: A challenge for Sustainability, International Journal of Renewable energy Development, 2015, 4(3), 219-226Google Scholar

  • Wasdiantoro H., Imbangan Hijauan dan Konsentrat yang Berbeda pada Penampilan Produksi Sapi Sumba Ongole yang Diberi Tiga Macam Ransum Penggemukan, Undergraduate Thesis, Bogor, Bogor Agricultural University, 2010, (in Indonesian)Google Scholar

  • Watson C. J, An assessment of granular urea/ammonium sulphate and urea/potassium nitrate fertilizers on nitrogen recovery by ryegrass, Nutrient Cycling in Agroecosystem, 1988, 19-29Google Scholar

  • Wihardjaka A, Mitigation of Methane Emission Through Lowland Management , Jurnal Litbang Pertanian, 2015, 34(3), 95-104, (in Indonesian)Google Scholar

  • Yang Ji, Gang, Liu, Ma Jing, Bin Zhang Guang, Hua Xu. Effects of Urea and Controlled Release Urea Fertilizers on Methane Emission from Paddy Fields: A Multi-Year Field Study. Pedosphere, 2014, 24(5), 662-673Google Scholar

About the article

Received: 2017-11-07

Accepted: 2018-02-17

Published Online: 2018-03-24


Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 46–56, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0006.

Export Citation

© 2018 Marissa Malahayati, Toshihiko Masui, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in