Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Improved Propagation Techniques to Enhance the Productivity of Banana (Musa spp.)

Robooni Tumuhimbise / David Talengera
  • National Banana Research Programme, National Agricultural Research Organisation, P.O. Box 7065, Kampala, Uganda David Talengera, Biocrops (U) Ltd, P.O. Box 3016, Kampala, Uganda
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-30 | DOI: https://doi.org/10.1515/opag-2018-0014


The objective of this article is to provide information on pertinent propagation techniques for increased banana productivity. Banana, a very important crop in many tropical and subtropical countries of the world, is propagated with extreme difficulties. Its ordinary propagation technique of using suckers directly detached from a mother plant is limited by low multiplication rates and propensity of disseminating pests and diseases, which culminates in reduced banana productivity. Improved propagation techniques such as mother plant stripping, decapitation and mini-corms that increase the number of suckers are also somewhat deficient for large scale seed production and quality. Consequently, tissue and cell culture methods have been developed to address some of the challenges of seed quantity and quality although they are yet to be widely adopted. In this detailed review that includes results from hard-to-find literature, we discuss the traditional and modern methods of banana propagation, their benefits and limitations. Specifically, tissue culture stands out as the most prolific method of delivering high quantity and quality seed in banana. Its applicability, however, is limited by high costs of production and a need for skilled personnel and specialized equipment. It is imperative that to build a sustainable and viable banana seed production system, a multiplication scheme that combines two or more multiplication methods including tissue culture for cleaning the seed stock is utilized. The information provided gives premise for interventions to alleviate the problems of low banana seed availability, quantity and quality.

Keywords : Banana production; suckers; tissue and cell culture; vegetative propagation


  • Arinaitwe G., Rubaihayo P.R., Magambo M.J.S., Proliferation rate effects of cytokine on banana (Musa spp.) cultivars, Scientia Hort., 2000, 86, 13-21.Google Scholar

  • Baker S., Bananas in East Africa, Emp. J. Exp. Agric. 1959, 20, 66-76.Google Scholar

  • Blomme G., Eden-Green S., Mustaffa M., Nwauzoma B., Thangavelu, R., Major diseases of banana, In: Pillay M., Tenkouano A. (Eds.), Banana breeding: Progress and Challenges, New York, CRC Publishers. 2011.Google Scholar

  • Blomme G., Turyagyenda LF., Soka G., Swennen R., Changes in leaf lamina shape and sizeduring banana shoot development, J. Appl. Biosci., 2008, 8, 280-287.Google Scholar

  • Buah J.N., Kawamitsu Y., Yonemori S., Murayama S., Field Performance of in vitro propagated and sucker-derived plants of banana (Musa spp.), Plant Prod. Sci., 2000, 3, 124-128.Google Scholar

  • Butler D., Fungus threatens top banana, Nature, 2013, 504,195-196.Web of ScienceGoogle Scholar

  • Dale J., James A., Paul J., Khanna H., Smith M., Peraza-Echeverria S., et al., Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature, 2017, DOI: 10.1038/s41467-017-01670-6.Web of ScienceCrossrefGoogle Scholar

  • Daniells J., Smith M., Post-flask management of tissue-cultured bananas. ACIAR Technical Report. No. 18 ACIAR; Canberra, Australia, 1991.Google Scholar

  • Daniells J.W., Global banana disease management: Getting serious with sustainability and food security, Acta Hort., 2009, 828,411-416.Google Scholar

  • Dubois T., Coyne D.L., Integrated pest management of banana, In: Pillay M., Tenkouano A. (Eds.), Banana breeding: Progress and Challenges, New York: CRC Publishers, 2011.Google Scholar

  • Faturoti B., Tenkouano A., Lemchi J., Nnaji, N., Rapid Multiplication of plantain and banana: Macropropagation techniques, IITA Report, 2002.Google Scholar

  • George P., Manuel J., Low cost tissue technology for the regeneration of some economically important plants for developing countries. Inter. J. Agric, Environ. Biotec., 2013, 6,703- 711.Google Scholar

  • Giles K.L., Worfolk S.C., Aspects of micropropagation and disease indexing of ornamentals. ActaHort., 1985, 164, 91-97.Google Scholar

  • Heslop-Harrison J., Schwarzacher T., Domestication, genomics and the future for banana. Ann. Bot., 2007, 100, 1073-1084.Google Scholar

  • Karamura E., Staver C., Strategies for improving bananas and plantains seed systems in Africa. (2010), BMGF Technical report, 2011.Google Scholar

  • Madhulatha P., Anbalagan M., Jayachandran S., Sakthivel N., Influence of liquid pulse treatment with growth regulators on in vitro propagation of banana (Musa spp. AAA), Plant Cell, Tissue, Organ Cult., 2004, 76 , 189-191.CrossrefGoogle Scholar

  • Manzur M.D., In situ mass propagation of the FHIA-20 banana hybrid using benzylaminopurine, InfoMusa, 2001, 10, 3-4.Google Scholar

  • Mintah L.O., In vivo stimulation of axillary bud initiation, growth and development of plantain (Musa AAB.) using coconut water and indole-3-acetic acid, PhD Thesis, University of Ghana, Ghana, 2013.Google Scholar

  • Msogoya T.J., Maerere A.P., Grout B.W., Field performance of micropropagated East African banana (Musa AAA-EA) in the Eastern zone of Tanzania, Biotec., 2006, 5, 471-474.Google Scholar

  • Ogero KO., Gitonga NM., Maina M., Omwoyo O., Ngugi M., In vitro micropropagation of cassava through low cost tissue culture. Asian J. Agric. Sci., 2012, 4, 205-209.Google Scholar

  • Ortiz R., Swennen R., From crossbreeding to biotechnologyfacilitated improvement of banana and plantain, Biotec. Advances, 2014, 32,158-169.PubMedGoogle Scholar

  • Ortiz R., Vuylsteke D., Genetics of apical dominance in plantain (Musa spp., AAB Group) and improvement of suckering behaviour, J. Am. Hort. Sci., 1994, 19, 1050-1053.Google Scholar

  • Pillay M., Cullis C.A., Talengera D., Tripathi L., Propagation methods in Musa, In: Pillay M.,Tenkouano A. (Eds.), Banana breeding: Progress and Challenges, New York, CRC Publishers, 2011.Google Scholar

  • Purseglove J.W., Tropical Crops: Monocotyledons, 1st ed. Longmans, England, 1985.Google Scholar

  • Robinson J.C., Fraserand C., Eckstein K., A field comparison of conventional suckers with tissue culture banana planting material over three crop cycles, J. Hort. Sci., 1993, 68,831-836.Google Scholar

  • Rukazambuga N.D.T.M., Gold C.S., Gowen S.R., Yield loss in East African highland banana. (Musa spp., AAA-EA-group) caused by the banana weevil, Cospolites sordidus Germar., Crop Prot., 1998, 17, 581-589.CrossrefGoogle Scholar

  • Saraswathi, M.S., Uma, S., Kannan, G., Selvasumathi, M., Mustaffa, M.M., Backiyarani, S., Cost effective tissue culture media for large-scale propagation of three commercial banana (Musa spp.) varieties. The J. Hort. Sci. Biotec., 2016, 91, 23-29.Google Scholar

  • Simmonds N.M., The evolution of the bananas, 1st ed., Longmans, London, 1962.Google Scholar

  • Singh H.P., Uma S., Selvarajan R., Karihaloo J.L., Micropropagation for Production of quality banana planting material in Asia-Pacific, Asia-Pacific Consort. Agric. Biotec., NewDelhi, India, 2011.Google Scholar

  • Singh T.D., Singh C.H., Nongalleima K., Moirangthem S., Devi H.S., Analysis of growth, yield potential and horticultural performance of conventional vs. micropropagated plants of Curcuma longa var. Lakadong, Afr. J. Biotech., 2013, 12, 1604-1608.Google Scholar

  • Smith M.K., Searle C., Langdon P.W., Schaffer B., Whiley A.W., Comparison between micropropagated banana (Musa AAA;`Williams’) and conventional planting material during the first 12 months of development, J .Hort. Sci. Biotec., 2001, 76,83-87.Google Scholar

  • Stover N.W., Simmonds R.H., Bananas, 1st ed., Longman, Essex, England, 1987.Google Scholar

  • Strosse H., Domergue, R., Panis B., Escalant J.V., Côte F., Banana and plantain embryogenic cell suspensions, INIBAP Technical Guidelines 8, Montpellier, France, 2003.Google Scholar

  • Swennen R., De Langhe E., Growth parameters of yield of plantain (Musa cvAAB), Ann. Bot. 1985, 56,197-204.Google Scholar

  • Swennen R., Ortiz R., Morphology and growth of plantain and banana. International Institute of Tropical Agriculture (IITA), Research Guide 66, 1st ed., Training Program, IITA, Ibadan, Nigeria, 1997.Google Scholar

  • Swennen R., Wilson G.F, and De Langhe E., Preliminary investigation of the effects of gibberellic acid (GA3) on sucker development in plantain (Musa cv. AAB) under field conditions, Trop. Agric., 1984, 61, 253-256.Google Scholar

  • Talengera, D., Magambo, M.J.S., Rubaihayo P.R., Testing for a suitable culture medium for micropropagation of East African highland bananas (Musa spp.), Afri. Crop Sci. J., 1994, 2, 17-21.Google Scholar

  • Talwana, H.A.L., Speijer P.R., DeWaele D., Swennen R.L., Effect of nematode infection and damage on nutrient concentrations in leaves ofthree banana cultivars commonly grown in Uganda. Afri. Crop Sci. Conf.Proceed., 2003, 6:182-190.Google Scholar

  • Tripathi L., Mwangi M., Aritua V., Tushemereirwe W., Abele S., Bandyopadhay, R., Xanthomonas wilt. A threat to banana production in East and Cetral Africa. Plant Dis., 2009, 93, 440-451.CrossrefGoogle Scholar

  • Tumuhimbise R., Buregyeya H., Barekye A., Ssali RT., Talengera D., Kubiriba J. et al., Selection of cooking banana genotypes for yield and black Sigatoka resistance in different locations in Uganda, J. Plant Breed. Crop Sci., 2016, 8, 60-71.Google Scholar

  • Tushemereirwe W K., Kashaija IN., Tinzaara W., Nankinga C., New, S., Banana production manual: A guide to successful banana production in Uganda, 1st ed., 2001.Google Scholar

  • Uma S., Saraswathi MS., Pillay M., Evolution and genetic relationships in banana and plantain, In: Pillay M., Tenkouano A. (Eds.), Banana breeding: Progress and Challenges, NewYork, CRC Publishers, 2011.Google Scholar

  • Vuylsteke D., Swennen R., Wilson G.F., De Langhe E., Phenotypic variation among in vitro propagated plantain (Musa sp. Cultivar ‘AAB’), Sceintia Hort., 1998, 36, 79-88.Google Scholar

  • Vuylsteke D.R., Ortiz R., Field performance of conventional vs. in vitro propagules of plantain (Musa spp., AAB Group), Hortsc., 1996, 31, 862-865.Google Scholar

  • Watt, M.P., The status of temporary immersion system (TIS) technology for plant micropropagation. Afr. J. Biotec., 2012, 11, 14025-14035.Google Scholar

  • Yam T.W., Arditti J., History of orchid propagation: a mirror of the history of biotechnology. Plant Biotec. Reports, 2009, 3, 1-56.Google Scholar

About the article

Received: 2018-02-02

Accepted: 2018-04-11

Published Online: 2018-05-30

Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 138–145, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0014.

Export Citation

© 2018 Robooni Tumuhimbise, David Talengera, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in