Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Assessing crop performance in maize field trials using a vegetation index

Carl-Philipp Federolf
  • Matthias Westerschulte, Hans-Werner Olfs, Dieter Trautz, Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Westerschulte
  • Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Werner Olfs
  • Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriele Broll
  • Corresponding author
  • Institute of Geography, University of Osnabrück, Seminarstraße 19 a/b, 49074 Osnabrück, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter Trautz
  • Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrück, Am Krümpel 31, 49090 Osnabrück, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-29 | DOI: https://doi.org/10.1515/opag-2018-0027


New agronomic systems need scientific proof before being adapted by farmers. To increase the informative value of field trials, expensive samplings throughout the cropping season are required. In a series of trials where different application techniques and rates of liquid manure in maize were tested, a handheld sensor metering the red edge inflection point (REIP) was compared to conventional biomass sampling at different growth stages and in different environments. In a repeatedly measured trial during the 2014, 2015, and 2016 growing seasons, the coefficients of determination between REIP and biomass / nitrogen uptake (Nupt) ascended from 4 leaves stage to 8 leaves stage, followed by a decent towards tasseling. In a series of trials in 2014, and 2015, the mean coefficients of determination at 8 leaves stage were 0.65, and 0.67 for biomass and Nupt, respectively. The predictability of biomass or Nupt by REIP however, is limited to similar conditions (e.g. variety). In this study, REIP values of e.g. ~721, represent Nupt values from ~8 kg ha-1 to ~38 kg ha-1. Consequently, the handheld sensor derived REIP used in this series of experiments can show growth differences between treatments, but referential samples are necessary to assess growth parameters.

Keywords: nitrogen uptake; active crop sensor; red edge inflection point; crop development; field trials


  • Al-Abbas A.H., Barr R., Hall J.D., Crane F.L., Baumgardner M.F., Spectra of normal and nutrient-deficient maize leaves. Agron. J., 1974, 66, 16-20Google Scholar

  • Baret F., Guyot G., Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ., 1991, 35, 161-173Google Scholar

  • Behrens T., Gregor K., Diepenbrock W., Separation of soil and canopy reflectance signatures of Mid German agricultural soils. Plant Soil Environ., 2005, 51, 296-303Google Scholar

  • Birch C.J., Vos J., van der Putten P.E., Plant development and leaf area production in contrasting cultivars of maize grown in a cool temperate environment in the field. Eur. J. Agron., 2003, 19, 173-188CrossrefGoogle Scholar

  • Bollen K.A., Jackman R.W.., Regression diagnostics: An expository treatment of outliers and influential cases. In: Fox J., Long J.S., editors. Modern Methods of Data Analysis. Sage, Newbury Park, CA, 1990, p. 257-291Google Scholar

  • Bonhomme R., Derieux M., Kinry, J.R., Edmeades, G.O., Ozier-Lafontaine H., Maize leaf number sensitivity in relation to photoperiod in multilocation field trials. Agron. J., 1991, 83, 153-157Google Scholar

  • Carter G.A., Knapp A.K., Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot., 2001, 88, 677-684CrossrefGoogle Scholar

  • Casa R., Baret F., Buis S., Lopez-Lozano R., Pascucci S., Palombo A., Jones H.G., Estimation of maize canopy properties from remote sensing by inversion of 1-D and 4-D models. Prec. Agric., 2010, 11, 319-334Web of ScienceGoogle Scholar

  • Clewer A.G., Scarisbrick D.H., Practical statistics and experimental design for plant and crop science. Wiley, Chichester, New York, USA, 2001Google Scholar

  • DIN, Futtermittel - Bestimmung des Stickstoffgehaltes und Berechnung des Rohproteingehaltes - Teil 1: Kjeldahl-Verfahren. DIN EN ISO 5983-1:2005, Beuth Verlag GmbH, Berlin, 2005Google Scholar

  • Drouet J.-L., Bonhomme R., Do variations in local leaf irradiance explain changes to leaf nitrogen within row maize canopies? Ann. Bot., 1999, 84, 61-69Google Scholar

  • Erdle K., Mistele B., Schmidhalter U., Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop. Res., 2011 124, 74-84CrossrefGoogle Scholar

  • Federolf C.-P., Westerschulte M., Olfs H.-W., Broll G., Trautz D., Enhanced nutrient use efficiencies from liquid manure by positioned injection in maize cropping in northwest Germany. Eur. J. Agron., 2016, 75, 130-138Web of ScienceGoogle Scholar

  • Federolf C.-P., Westerschulte M., Olfs H.-W., Broll G., Trautz D., Nitrogen dynamics following slurry injection in maize: Crop development. Nutr. Cycl. Agroecosys., 2017, 107, 19-31Google Scholar

  • Gomez K.A., Gomez A.A., Statistical procedures for agricultural research. Wiley, New York, USA, 1984Google Scholar

  • Guyot G., Baret F., Utilisation de la haute resolution spectrale pour suivre l’etat de couvertes vegeteaux. Proceedings of the 4th International Colloquium on Spectral Signatures in Remote Sensing, Aussois, France 18-22 January 1988, 279-286Google Scholar

  • Haas T., Measuring device for determining a vegetation index value of plants G01N 21/31 (2006.01), (WO/2011/015598), 2010Google Scholar

  • Haas T., ISARIA. Fritzmeier Umwelttechnik GmbH & Co. KG, Großhelfendorf, Germany, 2013Google Scholar

  • Hatfield J.L., Gitelson A.A., Schepers J.S., Walthall C.L., Application of spectral remote sensing for agronomic decisions. Agron. J., 2008, 100, 117-131Web of ScienceGoogle Scholar

  • Liu Y., Xie R., Hou P., Li S., Zhang H., Ming B., Long H., Liang S., Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crop. Res., 2013, 144, 192-199Google Scholar

  • Malenovský Z., Rott H., Cihlar J., Schaepman M.E., García-Santos G., Fernandes R., Berger M., Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ., 2012, 120, 91-101CrossrefGoogle Scholar

  • McMaster G.S., Wilhelm W.W., Growing degree-days: one equation, two interpretations. Agr. Forest. Meteorol., 1997, 87, 291-300Google Scholar

  • Mistele B., Schmidthalter U., Spectral measurements of total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Res., 2008a, 106, 94-103Google Scholar

  • Mistele B., Schmidhalter U., Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron., 2008b, 29, 184-190Web of ScienceCrossrefGoogle Scholar

  • Mollier A., Pellerin S., Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot., 1999, 50, 487-497CrossrefGoogle Scholar

  • Montes J.M., Technow F., Dhillon B.S., Mauch F., Melchinger A.E., High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crop. Res., 2011, 121, 268-273Web of ScienceGoogle Scholar

  • Olfs H.-W., Blankenau K., Brentrup F., Jasper J., Link A., Lammel J., Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant. Nutr. Soil. Sci., 2005 168, 414-431Google Scholar

  • Osborne S.L., Schepers J.S., Francis D.D., Schlemmer M.R., Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron. J., 2002, 94, 1215-1221Google Scholar

  • Plénet D., Lemaire G., Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil, 2000, 216, 65-82Google Scholar

  • Plénet D., Mollier A., Pellerin S., Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil, 2000, 224, 259-272Google Scholar

  • R Core Team., R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2016Google Scholar

  • Rambo L., Ma B.-L., Xiong Y., Regis Ferreira da Silvia P., Leaf and canopy optical characteristics as crop-N-status indicators for field nitrogen management in corn. J. Plant Nutr. Soil Sci., 2010, 173, 434-443Web of ScienceGoogle Scholar

  • Rashid M.T., Voroney P., Parkin G., Predicting nitrogen fertilizer requirements for corn by chlorophyll meter under different N availability conditions. Can. J. Soil Sci., 2005, 85, 149-159Google Scholar

  • Rasmussen J., Ntakos G., Nielsen J., Svensgaard J., Poulsen R.N., Christensen S., Are vegetation indices derived from consumergrade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron., 2016, 74, 75-92CrossrefGoogle Scholar

  • Rouse J.W., Haas R.H., Schell J.A., Deering D.W., Monitoring vegetation systems in the great plains with erts. In: NASA, editor. Third earth resources technology satellite-1 symposium-Volume I: Technical presentations, Washington, DC, 1974, p. 309-317Google Scholar

  • SAS Institute Inc., SAS/STAT® 9.3 User’s guide. SAS Institute Inc., Cary, NC, USA, 2011Google Scholar

  • Schmidthalter U., Maidl F.-X., Heuwinkel H., Demmel M., Auernhammer H., Noack P.O., Rothmund M., Precision Farming - Adaptation of land use management to small scale heterogeneity, In: Schroder P., Pfadenhauer J., Munch J. (Eds.), Perspectives for Agroecosystem Management, 1st ed., Elsevier, Amsterdam, 2008Google Scholar

  • Schröder J.J., ten Holte L., Brouwer G., Response of silage maize to placement of cattle slurry. Netherlands J. Agric. Sci., 1997, 45, 249-261Google Scholar

  • Sellers P.J., Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 1985, 6, 1335-1372CrossrefGoogle Scholar

  • Sticksel E., Schächtl J., Huber G., Liebler J., Maidl F.-X., Diurnal variation in hyperspectral vegetation indices related to winter wheat biomass formation. Prec. Agric., 2004, 5, 509-520Google Scholar

  • Sutton M.A., Oenema O., Erisman J.W., Leip A., van Grinsven H., Winiwarter W., Too much of a good thing. Nature, 2011, 472, 159-161Google Scholar

  • Tavakoli H., Mohtasebi S.S., Alimardani R., Gebbers R., Evaluation of different sensing approaches concerning to non destructive estimation of leaf area index (LAI) for winter wheat. Int. J. Smart Sensing Intell. Syst., 2014, 7, 337-359Google Scholar

  • Thenkabail P.S., Smith R.B., de Pauw E., Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ., 2000, 71, 158-182Google Scholar

  • Thoren D., Schmidhalter U., Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. Eur. J. Agron., 2009, 30, 238-242Web of ScienceCrossrefGoogle Scholar

  • Westerschulte M., Federolf C.-P., Pralle H., Trautz D., Broll G., Olfs H.-W., Soil nitrogen dynamics after slurry injection in field trials: Evaluation of a soil sampling strategy. J. Plant Nutr. Soil Sci., 2015, 178, 923-934Web of ScienceGoogle Scholar

  • Westerschulte M., Federolf C.-P., Trautz D., Broll G., Olfs H.-W., Nitrogen dynamics following slurry injection in maize: Soil mineral nitrogen. Nutr. Cycl. Agroecosys., 2017, 107, 1-17Web of ScienceGoogle Scholar

  • Winterhalter L., Mistele B., Jampatong S., Schmidhalter U., High-throughput sensing of aerial biomass and above-ground nitrogen uptake in the vegetative stage of well-watered and drought stressed tropical maize hybrids. Crop Sci., 2011, 51, 479Google Scholar

  • Winterhalter L., Mistele B., Schmidhalter U., Assessing the vertical footprint of reflectance measurements to characterize nitrogen uptake and biomass distribution in maize canopies. Field Crop. Res., 2012 129, 14-20Google Scholar

  • Withers P.J., Peel S., Chalmers A.G., Lane S.J., Kane R., The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England. Grass Forage Sci., 2000, 55, 105-11.Google Scholar

About the article

Received: 2018-02-17

Accepted: 2018-06-20

Published Online: 2018-08-29

Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 250–263, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0027.

Export Citation

© by Carl-Philipp Federolf et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in