Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

In vitro antagonism of five rhizobacterial species against athelia rolfsii collar rot disease in soybean

Irda Safni
  • Corresponding author
  • Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Widya Antastia
  • Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-22 | DOI: https://doi.org/10.1515/opag-2018-0028

Abstract

Plant Growth Promoting Rhizobacteria (PGPR) influence plant growth by a number of direct (producing plant growth promoting substances) and indirect (through prevention of deleterious effects of phytopathogenic microorganisms) mechanisms. Five species of bacteria were isolated from rhizospheric soils of soybean and peanut fields from several locations in North Sumatra. On the basis of morphological and biochemical characteristics, the bacteria were identified as Aeromonas hydrophila, Burkholderia cepacia, Serratia ficaria, Pantoea spp. 2, and Vibrio alginolyticus. These species were tested in vitro against the causal pathogen of collar rot disease of soybean, Athelia rolfsii, which is an important soybean disease in Indonesia. The five species of bacteria were subjected to screening of antagonistic activities against A. rolfsii in vitro with a dual culture-technique. Of the five species, B. cepacia, S. ficaria and V. alginolyticus were the most effective antagonistic bacteria to control A. rolfsii. B. cepacia, S. ficaria and V. algynolitycus produced inhibiting zones against A. rolfsii of 98.35%, 97.83% and 96.97% respectively. All bacterial species showed their antagonistic activity significantly with the inhibiting zone percentage being more than 60%. The experimental results suggested that all bacterial species have a future potency as a biocontrol agent to reduce A. rolfsii collar rot disease of soybean

Keywords: plant growth promoting rhizobacteria; Aeromonas hydrophila; Burkholderia cepacia; Serratia ficaria; Pantoea sp 2; Vibrio alginolyticus

References

  • Agrios G.N., Plant Pathology, Fourth Edition, Academic Press, London, 1997Google Scholar

  • Agustiansyah S. Ilyas S. and Machmud M., Karakterisasi Rizobakteri yang Berpotensi Mengendalikan Bakteri Xanthomonas oryzae pv.oryzae dan Meningkatkan Pertumbuhan Tanaman Padi, J. HPT.Trop., 2013, 13, 42-51Google Scholar

  • Bashan Y., and de-Bashan L.E., Bacterial, plant growth-promoting, in Encyclopedia of Soils in the Environment, Vol.1, ed. Hillel, London;Oxford: Elsevier, London: Oxford, 103-115, 2005Google Scholar

  • Cartwright D.K. and Benson M.D., Pseudomonas cepacia strain 5.5B and method of controlling Rhizoctonia solani therewith, US patent 5,288,633, 1994Google Scholar

  • De Los Santos-Villalobos S., Barrera-Galicia G.C., Miranda- Salcedo M.A., Péna-Cabriales J.J., Burkholderia cepacia XXVI siderophore with biocontrol activity against Colletotrichum gloeosporioides. World J. Microbiol. Biotechnol., 2012, 28(8), 2615-23Google Scholar

  • Direktorat Pangan dan Pertanian. Rencana Pembangunan Jangka Menengah Nasional (Rpjmn) Bidang Pangan Dan Pertanian 2015-2019, Available at http://www.bappenas.go.id/files/3713/9346/9271/RPJMN_Bidang_Pangan_dan_Pertanian_2015-2019.pdf. (accessed on 14th August 2017), 2015Google Scholar

  • Dirmawati S.R., Kajian komponen pengendalian ramah lingkungan penyakit pustul bakteri kedelai, PhD thesis, Agricultural Institute of Bogor, Bogor, Indonesia, 2003Google Scholar

  • Eberl L. and Vandamme P., Members of the genus Burkholderia: good and bad guys, F1000 Research, 5(F1000 Faculty Rev), 2016, 1007Google Scholar

  • EI-Banna N. and Winkelmann G., Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against Streptomycetes, J. Appl. Microbiol., 1998, 85, 69-78Google Scholar

  • Fridlender M., Inbar J. and Chet I., Biological control of soilborne plant pathogens by a, b-1, 3 glucanase-producing Pseudomonas cepacia, Soil Biol. Biochem., 1993, 25, 1211-1221Google Scholar

  • Govindasamy V., Senthilkumar M., Magheshwaran V., Kumar U., Bose P., Sharma V., Kannepalli Annapurna K., Bacillus and Paenibacillus spp: Potential PGPR for sustainable agriculture, Microbiology Monograph, 2010, 18, 333-364Google Scholar

  • Grimont F. and Grimont P.A.D., The genus Serratia. Prokaryotes 2006, 6, 219-244Google Scholar

  • Grimont P.A.D., Grimont F., Starr M.P., Serratia ficaria sp. nov. a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes. Current Microbiol., 1979, 2, 277-282Google Scholar

  • Hardaningsih S., Jenis Penyakit Kedelai dan Efektivitas Jamur Antagonis yang Berasal dari Kalimantan Selatan Terhadap Sclerotium rolfsii di Laboratorium, Suara Perlindungan Tanaman, 2011, 1, 23 28Google Scholar

  • Heydari A and Pessarakli M., A review on biological control of Fusarium plant pathognes using microbial antagonists, J. Biol. Sci., 2010, 10(4), 273-290Google Scholar

  • King E.B. and Parke J.L., Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars, Plant Dis., 1993, 77, 1185-1188Google Scholar

  • Kirinuki T., Iwanuma K., Suzuki N., Fukami H., Ueno T., Altericidins, a complex of polypeptide antibiotics produced by Pseudomonas sp. and their effect for the control of black spot of pear caused by Alternaria Kikuchiana Tanaka, Sci. Rep. Fac. Agric. Kobe Univ., 1977, 12, 223-230Google Scholar

  • Knowels C.J., Cyanide utilization and degradation by microorganisms, Ciba Found Symp., 1988, 140, 3-15Google Scholar

  • Kumar K.V.K., Ressy M.S., Kloepper J.W., Lawrence K.S., Yellareddygari S.K.R., Zhou X.G., Sudini H., Reddy E.C.S., Groth D.E., Miller M.E., Screening and selection of elite plant growth promoting rhizobacteria (PGPR) for suppression of Rhizoctonia solani and enhancement of rice seedling vigor, J. of Pure and Appl. Microbiol., 2011, 5(2), 1-11Google Scholar

  • Magdoff F., and Weil R.R., Soil Organic Matter in Sustainable Agriculture, CRC Press, New York, 2004Google Scholar

  • Mahenthiralingam E., Baldwin A., Dowson C.G., Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology, J. Appl. Microbiol., 2008, 104, 1539-51Google Scholar

  • Nautiyal P.C., Groundnuts: Postharvest Operations. Research Centre for Groundnuts (ICAR) [www.icar.org.in] accessed on 14th August 2017, 2002Google Scholar

  • Nursyam H., Antibacterial activity of metabolites products of Vibrio alginolitycus isolated from sponge Haliclona sp. against Staphylococcus aerus, Italian J. of Food Safety, 2017, 6, 6237Google Scholar

  • Ordentlich A., Elad Y., Chet I., The role of Serratia marcescens in biocontrol of Sclerotium rolfsii, Ecology and Epidemiol., 1988, 78, 84-88Google Scholar

  • Panwar M., Tewari R.,, Nayyar H., Native halo-tolerance plant growth promoting rhizobacteria Entorococcus and Pantoea sp. improve seed yield of mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury, Physiol. Mol. Biol. Plants, 2016, 22, 445-459Google Scholar

  • Parke J.L., Rand R., Joy A., King E.B., Biological control of Pythiumdamping off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or Pseudomonas fluorescens to seed. Plant Dis., 1991, 75, 987-992Google Scholar

  • Parker W.L., Rathnum M.L., Seiner V., Trejo W.H., Principe P.A., Sykes R.B. Cepacin A and cepacin B, two antibiotics produced by Pseudomonas cepacia, J. of Antibiotics, 1984, 37, 431-440Google Scholar

  • Peeters C., Zlosnik J.E., Spilker T., et al., Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere, Syst Appl Microbiol., 2013, 36, 483-9Google Scholar

  • Punja Z.K., Sclerotium (Athelia) rolfsii, a pathogen of many plant species. In: Genetics of plant pathogenic fungi, (Ed.): G.S. Sidhu. Vol. 6, Academic Press, London, 1988, pp. 523-534Google Scholar

  • Rahayu M., Efikasi Isolat Pseudomonas fluorescens tehadap Penyakit Rebah Semai pada Kedelai, Penelitian Pertanian Tanaman Pangan, 2008, 27, 179-184Google Scholar

  • Rai M., Handbook of Microbial Biofertilizers. Haworth Press, New York, 2006Google Scholar

  • Ratulangi M.M., Control of Sclerotium Wilt Disease on Soybean by Soil Solarization, Eugenia, 2004, 10, 1-7Google Scholar

  • Rolfs P.H., The tomato and some of diseases, Florida University Agr. Expt. Stain. Bull.,1892, 21, 1-38Google Scholar

  • Saccardo P.A., Notes Mycologicae. Ann. Mycol., 1911, 9, 249-257Google Scholar

  • Safni, I., Lisnawita, Lubis, K., Tantawi, A.R., Murthi, S., Isolation and characterization of rhizobacteria for biological control of root-knot nematodes in Indonesia, J.ISSAAS, 2018, 24, 67-81Google Scholar

  • Saha D., Purkayastha G.D., Saha A., Biological control of plant diseases by Serrratia species: a review or a case study. In Frontiers on Recent Developments in Plant Science. Eds. Goyal, A and Maheshwari, P. Bentham e Books, Canada, 2017, pp. 99-117Google Scholar

  • Saharan B.S and Nehra V., Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research, 2011Google Scholar

  • Schaad N.W., Jones J.B., Chun W., Laboratory guide for identification of plant pathogenic bacteria, Third edition, APS Press, Minnesota, 2001Google Scholar

  • Schmidt S., Blom J.F., Pernthaler J., et al., Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex, Environ. Microbiol., 2009, 11, 1422-37Google Scholar

  • Semangun H., Penyakit-Penyakit Tanaman Pangan di Indonesia, Gadjah Mada University Press, Yogyakarta, 1993Google Scholar

  • Sharma C.K., Dubey R.C. Plant Growth Promoting and antagonistic properties of Pseudomonas putida CRN-09 against Macrophomina phaseolina (TASSI) GOID, Indian J. Sci. Res, 2017, 13, 1-5Google Scholar

  • Someya N., Ikeda S., Morohoshi T. et al., Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes and Environ. 2011, 26, 7-14Google Scholar

  • Suryanto D., Prospek Keanekaragaman Hayati Mikroba (Microbial Bioprospecting) Sumatera Utara. Pidato Pengukuhan Jabatan Guru Besar Tetap dalam Bidang Mikrobiologi, FMIPA USU, Medan, Indonesia, 2009Google Scholar

  • Tu C.C and Kimbrough J.W., Systematic and Phylogeny of Fungi in The Rhizoctonia Complex, Bot Gaz. 1978, 139, 454-466Google Scholar

  • Vandamme P. and Peeters C., Time to revisit polyphasic taxonomy, Antonie Van Leeuwenhoek, 2014, 106, 57-65Google Scholar

  • Vial L., Groleau M.C., Dekimpe V., et al., Burkholderia diversity and versatility: an inventory of the extracellular products, J. Microbiol. Biotechnol., 2007, 17, 1407-29Google Scholar

  • Wahyuningsih I., Aplikasi Rhizobacteri Antagonis untuk mengendalikan penyakit Sclerotium rolfsii Sacc pada fase vegetative tanaman kedelai (Glycine max (L.) Merill) secara in vivo, Universitas Muhammadiyah, Malang, Indonesia, 2005Google Scholar

  • Whipps J.M., Microbial interations and biocontrol in the rhizosphere, J. Exp. Bot., 2001, 52, 487-511.Google Scholar

  • Widayanti, Isolasi dan karakterisasi Bacillus sp. indigenus penghasil asam indol asetat asal tanah rhizosfer, Thesis. Department of Biology, Faculty of Math and Science, Agricultural Institute of Bogor, Bogor, Indonesia, 2007Google Scholar

  • Woyesa D. and Assefa F., Diversity and plant growth promoting properties of rhizobacteria isolated from Eragrotis tef., Ethip. J. Edu. and Sc., 2011, 6Google Scholar

  • Zhang F., Dashti N. Hynes R.K., Smith D.L., Plant growth-promoting rhizobacteria and soybean (Glycine max (L.) Merr.) growth and physiology at suboptimal root zone temperature. Annals of Botany, 1997, 79, 243-249.Google Scholar

About the article

Received: 2017-09-26

Accepted: 2018-06-26

Published Online: 2018-08-22


Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 264–272, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0028.

Export Citation

© 2018 Irda Safni and Antastia Widya, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in