Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Impact of climate change on the potato crop and biodiversity in its center of origin

Roberto Quiroz
  • Corresponding author
  • Tropical Agricultural Research and Higher Education Center, CATIE, CartagoTurrialba, Costa Rica
  • Tropical Agricultural Research and Higher Education Center, CATIE, CartagoTurrialba, Costa Rica
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David A. Ramírez
  • International Potato Center, Headquarters,Lima12, Peru
  • Gansu Key Laboratories of Arid and Crop Science, Crop Genetic and Germplasm Enhancement, Agronomy College, Gansu Agricultural University,Lanzhou, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Kroschel / Jorge Andrade-Piedra / Carolina Barreda / Bruno Condori / Victor Mares / Philippe Monneveux / Willmer Perez
Published Online: 2018-08-01 | DOI: https://doi.org/10.1515/opag-2018-0029

Abstract

The Andean region is the most important center of potato diversity in the world. The global warming trend which has taken place since the 1950s, that is 2-3 times the reported global warming and the continuous presence of extreme events makes this region a live laboratory to study the impact of climate change. In this review, we first present the current knowledge on climate change in the Andes, as compared to changes in other mountain areas, and the globe in general. Then, the review describes the ecophysiological strategies to cope and adapt to changes in atmospheric CO2 levels, temperature and soil water availability. As climate change also has a significant effect on the magnitude and frequency of the incidence of pests and diseases, the current knowledge of the dynamics of vectors in the Andean region is discussed. The use of modeling techniques to describe changes in the range expansion and number of insect pest generations per year as affected by increases in temperature is also presented. Finally, the review deals with the use of crop modeling to analyze the likely impact of projected climate scenarios on potato yield and tuber initiation.

Keywords: Andes; crop modeling; global warming; pest; Solanum spp

References

  • Alcazar J., Cisneros F., Taxonomy and bionomics of the Andean potato weevil complex: Premnotrypes spp. and related genera. In: International Potato Center (CIP), Program Report 1997-1998, CIP, 1999Google Scholar

  • Barnaby J.Y., Fleisher D., Reddy V., Sicher R., Combined effects of CO2 enrichment, diurnal light levels and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers, Physiol. Plant., 2015, 153, 243-252Google Scholar

  • Boland G.J., Melzer M.S., Hopkin A., Higgins V., Nassuth A., Climate change and plant diseases in Ontario, Can. J. Plant Pathol., 2004, 26, 335-350 Burton W.G., Challenges for stress physiology in potato, Am. Potato J., 1981, 58, 3-14.CrossrefGoogle Scholar

  • Carvalho L.V., Jones C., Posadas A.N., Quiroz R., Bookhagen B.M.V., Liebmann B., Precipitation characteristics of the South American Monsoon System derived from multiple data sets, J. Clim., 2012, 25(13), 4600-4620Google Scholar

  • Chakraborty S., Newton A.C., Climate change, plant diseases and food security: an overview. Plant Pathol., 2011, 60(1), 2-14Google Scholar

  • Condori B., Hijmans R.J., Quiroz R., Ledent J.-F., Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling, Field Crops Res., 2010, 119(1), 135-144Google Scholar

  • Condori B., Hijmans R.J., Quiroz R., Ledent J.-F., Managing potato biodiversity to cope with frost risk in the high Andes. Plos One, 2014, 119(1), 135-144Google Scholar

  • de Haan S., Nuñez J., Bonierbale M., Ghislain M., Multilevel Agrobiodiversity and Conservation of Andean Potatoes in Central Peru, Mt. Res. Dev., 2010, 30(3), 222-231Google Scholar

  • Devaux A., Kromann P., Ortiz O., Potatoes for Sustainable Global Food Security, Potato Res., 2014, 57(3),185-199CrossrefGoogle Scholar

  • Dillon M.E., Wang G., Huey R.B., Global metabolic impacts of recent climate warming. Nature, 2010, 467, 704-706Google Scholar

  • Duffaut L.A., Posadas A.N., Carbajal M., Quiroz R., Multifractal downscaling of rainfall using normalized difference vegetation index (NDVI) in the Andes plateau. PlosOne, 2017, 12(1), e0168982Google Scholar

  • FAOSTAT, Food and agriculture data, 2017, http://www.fao.org/faostat/en/#homeGoogle Scholar

  • Finnan J.M., Donnelly A., Jones M.B., Burke J.I., The Effect of Elevated Levels of Carbon Dioxide on Potato Crops, J. Crop Improv., 2005, 13, 91-111Google Scholar

  • Fleisher D.H., Timlin D.J., Reddy V.R., Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agric. For. Meteorol., 2008a, 148, 1109-1122Google Scholar

  • Fleisher D.H., Timlin D.J., Reddy V.R., Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J., 2008b, 100, 711-719Google Scholar

  • Fleisher D.H., Barnaby J., Sicher R., Resop J.P., Timlin D.J., Reddy V.R., Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes, Agric. For. Meteorol., 2013, 171-172, 270-280Google Scholar

  • Fleisher D.H., Condori B., Quiroz R., Alva A., Asseng S., Barreda C., et al., Potato Model Uncertainty Across Common Datasets and Varying Climate. Glob. Change Biol., 2016, 23(3), 1258-1281.CrossrefGoogle Scholar

  • Forbes G. A., Lizarraga C., The impact of potato late blight management on poverty and hunger, 2010, https://research.cip.cgiar.org/confluence/download/attachments/16679037/The+Impact+of+Potato+Late+Blight+Management+on+Poverty+and+Hunger.docGoogle Scholar

  • Garreaud R.D., Vuille M., Clement A.C., The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2003, 194(1-3), 5-22Google Scholar

  • Garrett K.A., Dendy S.P., Frank E.E., Rouse M.N., Travers S.E., Climate change effects on plant disease: Genomes to ecosystems. Annu Rev Phytopathol, 2006, 44, 489-509.CrossrefGoogle Scholar

  • Giraldo D., Juarez H., Perez W.M., Trebejo I., Izarra W., Forbes G., Severity of the potato late blight (Phytophthora infestans) in agricultural areas of Peru associated with climate change (in Spanish), 2010, http://www.senamhi.gob.pe/rpga/pdf/2010_vol02/art5.pdf.Google Scholar

  • Govindasamy B., Duffy P.B., Coquard J., High-resolution simulations of global climate, part 2: effects of increased greenhouse cases. Clim. Dyn., 2003, 21, 391-404Google Scholar

  • Haverkort A.J., Verhagen A., Climate change and its repercussions for the potato supply chain. Potato Res., 2008, 51, 223-237Google Scholar

  • Haylock M.R., Peterson T.C., Alves L.M., Ambrizzi T., Anunciação Y.M.T., Baez J., et al., Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature, J. Clim., 2006, 19(8), 1490-1512Google Scholar

  • Hijmans R.J., Forbes G.A., Walker T.S. Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathol., 2000, 49, 697-705Google Scholar

  • Hijmans R.J., Global distribution of the potato crop. Am. J. Potato Res., 2001, 78(6), 403-412CrossrefGoogle Scholar

  • Hijmans R.J., The effect of climate change on global potato production, Am. J. Potato Res., 2003, 80(4), 271-280CrossrefGoogle Scholar

  • IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2013Google Scholar

  • Jefferies R.A., Physiology of crop response to drought. In: Haverkort A.J., MacKerron D.K.L. (Eds.), Potato Ecology and Modeling of Crops under Conditions Limiting Growth, Wageningen Academic Publishers, The Netherlands, 1995Google Scholar

  • Kapsa J.S., Important threats in potato production and integrated pathogen/pest management, Potato Res., 2008, 51, 385-401Google Scholar

  • Kimball B.A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36-43Google Scholar

  • Kroschel J., Mujica N., Alcazar J., Canedo V., Zegarra O., Developing Integrated Pest Management for Potato: Experiences and Lessons from Two Distinct Potato Production Systems of Peru. In: He Z., Larkin R., Honeycutt W. (eds) Sustainable Potato Production: Global Case Studies. Springer, Dordrecht, 2012Google Scholar

  • Kroschel J., Sporleder M., Tonnang H.E.Z., Juarez H., Carhuapoma P., Gonzales J.C, Simon R., Predicting climate-changecaused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping, Agric. For. Meteorol., 2013, 170, 228-241Google Scholar

  • Kroschel J., Schaub B., Biology and Ecology of Potato Tuber Moths as Major Pests of Potato, In: Giordanengo P., Vincent C., Alyokhin A., Insect Pests of Potato: Biology and Management, Elsevier Inc., 2012Google Scholar

  • Kroschel J., Mujica, N., Carhuapoma P., Sporleder M., Pest Distribution and Risk Atlas for Africa- Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates, International Potato Center (CIP), Lima, Peru, 2016Google Scholar

  • Luck J., Spackman M., Freeman A., Trebicki P., Griffiths W., Finlay K., Chakraborty S., Climate change and diseases of food crops. Plant Pathol., 2011, 60,113-121CrossrefGoogle Scholar

  • Lutaladio N., Castaldi L., Potato: The Hidden Treasure. J. Food Compos. Anal., 2009, 22, 491-493CrossrefGoogle Scholar

  • Magan N., Medina A., Aldred D., Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol., 2011, 60, 150-63CrossrefGoogle Scholar

  • Masters G., Norgrove, L., Climate change and invasive alien species. CABI Working Paper 1, 2010, https://www.cabi.org/Uploads/CABI/expertise/invasive-alienspecies-working-paper.pdfGoogle Scholar

  • Medici L.O., Reinert F., Carvalho D.F., Kozak M., Azevedo R.A., What about keeping plants well-watered? Environ. Exp. Bot., 2014, 99, 38-42Google Scholar

  • Mohr, K.I., Slayback D., Yager K., Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes, J. Clim., 2014, 27, 3982-4001Google Scholar

  • Monneveux P., Ramírez D.A., Pino M.T., Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci., 2013, 205-206, 76-86Google Scholar

  • Morin E., To know what we cannot know: Global mapping of minimal detectable absolute trends in annual precipitation. Water Resour. Res., 2011, 47(7), 1-9.CrossrefGoogle Scholar

  • Mujica N., Ecological approaches to manage the leafminer fly Liriomyza huidobrensis (Blanchard) in potato-based agroecosystems of Peru. In: J Kroschel (Ed.), Tropical Agriculture 21, Advances in Crop Research 11, Margraf Publishers, Weikersheim, Germany, 2016Google Scholar

  • Mujica N., Carhuapoma P., Kroschel J., Serpentine leafminer Liriomyza huidobrensis (Blanchard 1926). In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M., (Eds.): Pest distribution and risk atlas for Africa: potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center, Lima, Peru, 2016Google Scholar

  • Newbery F., Qi A., Fitt B.D.L., Modelling impacts of climate change on arable crop diseases: progress, challenges and applications, Curr. Opin. Plant Biol. 2016, 32, 101-109CrossrefGoogle Scholar

  • Olesen J. E., Bindi M., Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron., 2002, 16(4), 239-262CrossrefGoogle Scholar

  • Plessl M., Elstner E. F., Rennenberg H., Habermeyer J., Heiser I., Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environ. Exp. Bot., 2007, 60(3), 447-457CrossrefGoogle Scholar

  • Quiroz R., Loayza H., Barreda C., Gavilán C., Posadas A., Ramírez D.A., Linking process-based potato models with light reflectance data: Does modeling complexity enhance yield prediction accuracy?, Eur. J. Agron., 2017, 82, 104-112Google Scholar

  • Rabatel A., Francou B., Soruco, A., Gomez J, Cáceres B., Ceballos J.L., et al., Current state of glaciers in the tropical Andes: A multicentury perspective on glacier evolution and climate change, Cryosphere, 2013, 7, 81-102Google Scholar

  • Ramírez D.A., Rolando J.L., Yactayo W., Monneveux P., Mares V., Quiroz R., Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci., 2015, 238, 26-32Google Scholar

  • Raymundo R., Asseng S., Cammarano D., Quiroz R., Potato, sweet potato, and yam models for climate change: A review, Field Crop. Res., 2014, 166, 173-185.Google Scholar

  • Raymundo R., Asseng S., Prassad R., Kleinwechter U., Concha J., Condori B., et al., Performance of the SUBSTOR-potato model across contrasting growing conditions, Field Crop. Res., 2017, 202, 15, 57-76Google Scholar

  • Rolando J.L., Turin C., Ramírez D.A., Mares V., Monerris J., Quiroz R., Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes, Agric. Ecosyst. Environ., 2017, 236, 221-223Google Scholar

  • Rosenzweig C., Jones J.W., Hatfield J.L., Ruane A.C., Boote K.J., Thorburn P., et al., The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies, Agric. For. Meteorol., 2013, 170, 166-182Google Scholar

  • Schaub, B., Carhuapoma P., Kroschel J., Guatemalan potato tuber moth, Tecia solanivora (Povolny 1973), In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M (Eds.), Pest Distribution and Risk Atlas for Africa: Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates, International Potato Center, Lima, Peru, 2016Google Scholar

  • Schauwecker S., et al., Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited, Global Planet. Change, 2014, 119, 85-97Google Scholar

  • Segnini A., Posadas A., Quiroz R., Milori D.M.B.P., Saab S.C., Martin Neto L., et al., Spectroscopic assessment of soil organic matter in wetlands from the high Andes, Soil Sci. Soc. Am. J., 2010, 74(6), 2246-2253CrossrefGoogle Scholar

  • Segnini A., Posadas A., Quiroz R., Milori D.M.B.P., Vaz C.M.P., Martin Neto L., Soil carbon stocks and stability across an altitudinal gradient in southern Peru, J. Soil Water Conserv., 2011, 66(4), 213-220CrossrefGoogle Scholar

  • Shahnazari A., Liu F.L., Andersen M.N., Jacobsen S.E., Jensen C.R., Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions, Field Crop. Res., 2007, 100, 117-124Google Scholar

  • Shakya S.K., Goss E.M., Dufault N.S., van Bruggen A.H.C., Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change, Phytopathology, 2015, 105, 230-238Google Scholar

  • Sicher R.C., Barnaby J.Y., Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress, Physiol. Plant., 2012 144, 238-253Google Scholar

  • Singh B.P., Dua V.K., Govindakrishnan P.M., Sharma S., Impact of Climate Change on Potato. In: Singh H., Rao N., Shivashankar K. (Eds.), Climate-Resilient Horticulture: Adaptation and Mitigation Strategies, Springer, India, 2013Google Scholar

  • Sparks A.H., Forbes G.A., Hijmans R.J., Garrett K.A., A metamodeling framework for extending the application domain of processbased ecological models, Ecosphere, 2011, 2(8), 1-14Google Scholar

  • Sparks A.H., Forbes G.A., Hijmans R.J., Garrett K.A., Climate change may have limited effect on global risk of potato late blight, Glob. Change Biol., 2014, 20, 3621-31CrossrefGoogle Scholar

  • Spooner D.M., McLean K., Ramsay G., Waugh R., Bryan G.J., A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping, Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14694-14699CrossrefGoogle Scholar

  • Spooner D.M., Ghislain M., Simon R., Jansky S.H., Gavrilenko T., Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev., 2014, 80, 283-383Google Scholar

  • Sporleder M., Tonnang H.E.Z., Carhuapoma P., Gonzales J.C., Juarez H., Kroschel J., Insect Life Cycle Modeling (ILCYM) software a new tool for regional and global insect pest risk assessments under current and future climate change scenarios. In: Peña JE (Ed), Potential invasive pests of agricultural crops. CABI, Boston, 2013Google Scholar

  • Sporleder M., Tonnang H., Juarez H., Carhuapoma P., Gonzales J.C., Mendoza D., Simon R., Kroschel J, ILCYM - Insect Life Cycle Modeling. A Software Package for Developing Temperaturebased Insect Phenology Models with Applications for Local, Regional and Global Analysis of Insect Population and Mapping. Manual for ILCYM, version 3.0, International Potato Center, Lima, Peru, 2014Google Scholar

  • Sporleder M., Carhuapoma P., Kroschel J., Andean potato tuber moth, Symmetrischema tangolias (Gyen 1913). In: Kroschel J., Mujica N., Carhuapoma P., Sporleder M., (Eds.): Pest distribution and risk atlas for Africa: potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center, Lima, Peru, 2016Google Scholar

  • Tardieu F., Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot., 2012, 63, 25-31CrossrefGoogle Scholar

  • Thibeault J.M., Seth A., Garcia M., Changing climate in the Bolivian altiplano: Cmip3 projections for temperature and precipitation extremes, J. Geophys. Res., 2010, 115, 1-18Google Scholar

  • Thibeault J.M., Seth A., Wang G., Mechanisms of summertime precipitation variability in the Bolivian altiplano: Present and future, Int. J. Climatol., 2011, 32(13), 2033-2041Google Scholar

  • Van Asch M., van Tienderen P.H., Holleman L.J.M., Visser M., Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol., 2007, 13(8), 1596-1604Google Scholar

  • van der Waals J.E., Krüger K., Franke A.C., Haverkort A.J., Steyn J.M., Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests, Potato Res., 2013, 56, 67-84Google Scholar

  • Vanloon C.D., The effect of water stress on potato growth, development, and yield. Am. Potato J., 1981, 58, 51-69CrossrefGoogle Scholar

  • Voigt W., Perner J., Davis A.J., Eggers T., Schumacher J., Bährmann R., Fabian B., Heinrich W., Köhler G., Lichter D., Marstaller R., Sander F.W., Trophic levels are differentially sensitive to climate. Ecology, 2003, 84, 2444-2453CrossrefGoogle Scholar

  • Vuille M., Francou B., Wagnon P., Juen I., Kaser G., Mark B.G., Bradley R.S., Climate change and tropical Andean glaciers- Past, present and future, Earth Sci. Rev., 2008a, 89, 79-96CrossrefGoogle Scholar

  • Vuille, M., Kaser G., Juen I., Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation, Glob. Planet. Change, 2008b, 62(1-2), 14-28Google Scholar

  • Vuille M., Franquist E., Garreaud R., Lavado W., Caceres B., Impact of the global warming hiatus on Andean temperature, J. Geophys. Res. Atmos., 2015, 120, 3745-3757Google Scholar

  • Xu H.L., Qin F.F., Xu Q.C., Tan J.Y., Liu G.M., Applications of xerophytophysiology in plant production - The potato crop improved by partial root zone drying of early season but not whole season, Sci. Hortic., 2011, 129, 528-534Google Scholar

  • Yactayo W., Ramírez D.A., Gutiérrez R., Mares V., Posadas A., Quiroz R., Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency, Agric. Water Manag., 2013, 123, 65-70Google Scholar

  • Yang J., Fleisher D.H., Sicher R.C., Kim J., Baligar V.C., Reddy V.R., Effects of CO2 enrichment and drought pretreatment on metabolite responses to water stress and subsequent rehydration using potato tubers from plants grown in sunlit chambers, J. Plant Physiol., 2015, 189, 126-132.Google Scholar

About the article

Received: 2018-02-26

Accepted: 2018-06-21

Published Online: 2018-08-01


Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 273–283, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0029.

Export Citation

© 2018 Roberto Quiroz, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in