Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Effects of machinery trafficking in an agricultural soil assessed by Electrical Resistivity Tomography (ERT)

Aitor García-Tomillo
  • Corresponding author
  • Centro de Investigaciones Cientificas Avanzadas (CICA) - Facultad de Ciencias, grupo AQUASOL, Universidade da Coruna. Campus Elvina As Carballeiras s/n 15071 A Coruna, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomás de Figueiredo
  • Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca (ESA/IPB),Campus de Santa Apolonia, 5300-253 Braganca, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Dafonte Dafonte
  • Departamento de Ingenieria Agroforestal, Universidad de Santiago de Compostela – Benigno Ledo s/n. CP- 27002, Lugo, Espana
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arlindo Almeida
  • Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca (ESA/IPB),Campus de Santa Apolonia, 5300-253 Braganca, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Paz-González
  • Centro de Investigaciones Cientificas Avanzadas (CICA) - Facultad de Ciencias, grupo AQUASOL, Universidade daCoruna. Campus Elvina As Carballeiras s/n 15071 A Coruna, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-31 | DOI: https://doi.org/10.1515/opag-2018-0042


Soil compaction is a serious problem, which is aggravated due to its difficulty to locate and reverse. Electrical resistivity tomography (ERT) is a non-invasive geophysical method that can be used to identify compacted areas, soil horizon thickness and assess soil physical properties. This study assesses the relationship between ERT and soil compaction. Data were collected on a 4-m transect in a fallow plot located at Braganca (Portugal). Measurements were performed before and after tillage and tractor passage. Soil samples at different depths (0-0.05, 0.05-0.1 and 0.1-0.2 m depth) were taken to determine: soil bulk density, porosity, saturated hydraulic conductivity and soil water content. The effect of tillage and tractor passage was more significant on the first 0.05 m depth. In the wheel track areas, ERT suffered a reduction of about 40%, saturated hydraulic conductivity decreased by 70% and bulk density increased by 24%. These results proved that ERT can be a useful tool for assessing soil compaction.

Keywords: Electrical Resistivity Tomography; Saturated Hydraulic Conductivity; Soil Compaction; Tillage


  • Basso B., Amato M., Bitella, G., Rossi R., Kravchenko A., Sartori L., Carvahlo L.M., Gomes J., Two-Dimensional Spatial and Temporal Variation of Soil Physical Properties in Tillage Systems Using Electrical Resistivity Tomography. Agronomy Journal, 2010, 102(2), 440-449Google Scholar

  • Batey T., Soil compaction and soil management - a review. Soil, Use and Management, 2009, 25, 335-345Google Scholar

  • Besson A., Cousin I., Samouelian A., Boizard H., Richard G., Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil and Tillage Research, 2004, 79, 239-249Google Scholar

  • Besson A., Seger M., Giot G., Cousin I., Identifying the characteristic scales of soil structural recovery after compaction from three in-field methods of monitoring. Geoderma, 2013, 204-205,130-139Google Scholar

  • Dafonte J., Raposo J.R., Valcarcel M., Fandino M., Martinez E.M., Rey B.J., Cancela, J.J., Utilizacion de la tomografia electrica resistiva para estimar el contenido de agua en el suelo en vina bajo diferentes sistemas de riego 57-62. In: Dafonte J., Cancela Barrio J.J., Lopez Fabal A., Lopez Lopez N., Martinez Perez E.M., Valcarcel Armesto M. (eds.), Estudios en la Zona No Saturada del Suelo Vol. XI - ZNS‘13 2013, Universidad de Santiago de Compostela, 2013.Google Scholar

  • FAO, Manual de practicas integradas de manejo y conservacion de suelos. In: Roma: Boletin de tierras y aguas de la FAO, 2000, 8, 233Google Scholar

  • Farzamian M., Monteiro Santos F.A., Khalil M.A., Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of Applied Geophysics, 2015, 112,175-189Google Scholar

  • Fernandes J.C., Gamero C.A., Rodrigues J.G.L., Miras-Avalos J.M., Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research, 2011, 112(2), 167-174Google Scholar

  • Friedman S.P., Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 2005, 46, 45-70Google Scholar

  • Hillel D., Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations 1998, Academic PressGoogle Scholar

  • Horn R., Fleige H., A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil and Tillage Research, 2003, 73, 89-99Google Scholar

  • IUSS Working Group WRB. World reference base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps. World soil resources reports, 2014, 106. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar

  • Koppen W. Das geograsphica system der Klimate. In W. Koppen and G. Geiger (Eds.), Handbuch der Klimatologie, 1936 1C,1-44. Gebr, Bontraerger, 1936Google Scholar

  • Loke M.H. and Barker R., Rapid least-squares inversion of apparent resistivity pseudosection by a quasi-Newton method. Geophysical Prospecting, 1996, 44,131-152Google Scholar

  • Loke M.H., RES2DINV ver. 3.59 for Windows XP/Vista/7, Rapid 2-D Resistivity and IP inversion using the least-squares method. Geotomo Software, 2010, ManualGoogle Scholar

  • Loke M.H., Tutorial: 2-D and 3-D electrical imaging surveys. In: www. geoelectrical.com, 2011Google Scholar

  • Miras-Avalos J.M., Paz-Gonzalez A., Dafonte J., Vidal-Vazquez E., Valcarcel-Armesto M., Concentrated flow erosion as a main source of sediments in Galicia, Spain. Earth Surface Processes and Landforms, 2009, 34,2087-2095Google Scholar

  • Nawaz M.F., Bourrie G., Trolard F., Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 2013, 33, 291Google Scholar

  • Rossi R., Amato M., Bitella G., Bochicchio R., Electrical resistivity tomography to delineate greenhouse soil variability. International Agrophysics, 2013,13(27), 211-218Google Scholar

  • Sakai H., Nordfjell T., Suadicani K., Talbot B., Bollehuus E., Soil compaction on forest soils from different kinds of tires and tracks and possibility of accurate estimate. Croatian Journal of Forest Engineering 2008, 29, 15-27Google Scholar

  • Samouelian A., Cousin I., Tabbagh A., Bruand A., Richard G., Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 2005, 83, 173-193Google Scholar

  • Seladji S., Cosenza P., Tabbagh A., Ranger J., Richard G., The effect of compaction on soil electrical resistivity: a laboratory investigation, European Journal of Soil Science, 2010, 61(6), 1365-2389Google Scholar

  • Silva S., Barros N., Costa L., Leite F., Soil compaction and eucalyptus growth in response to forwarder traffic intensity and load. Revista Brasileira de Ciencia do Solo, 2008, 32, 921-932Google Scholar

About the article

Received: 2018-05-25

Accepted: 2018-08-30

Published Online: 2018-10-31

Published in Print: 2018-10-01

Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 378–385, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0042.

Export Citation

© by Aitor García-Tomillo et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in