Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Biplot Yield Analysis of Heat-Tolerant Spring Wheat Genotypes (Triticum Aestivum L.) in Multiple Growing Environments

Akbar Hossain / M. Farhad / M.A.H.S. Jahan / M. Golam Mahboob / Jagadish Timsina
  • Soils and Environment Research Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime A. Teixeira da Silva
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/opag-2018-0045


It is important to identify and develop stable wheat varieties that can grow under heat stress. This important issue was addressed in Bangladesh using six wheat genotypes, including three existing elite cultivars (‘BARI Gom 26’, ‘BARI Gom 27’, ‘BARI Gom 28’) and three advanced lines (‘BAW 1130’, ‘BAW 1138’, ‘BAW 1140’). Six sowing dates, namely early sowing (ES) (10 November), optimum sowing (OS) (20 November), slightly late sowing (SLS) (30 November), late sowing (LS) (10 December), very late sowing (VLS) (20 December) and extremely late sowing (ELS) (30 December) were assessed over two years in four locations, representative of the diversity in Bangladesh’s agro-ecological zones. In a split plot design, sowing dates were allocated as main plots and genotypes as subplots. A GGE biplot analysis was applied to identify heat tolerance and to select and recommend genotypes for cultivation in heat-prone zones. All tested genotypes gave greatest grain yield (GY) after OS, followed by SLS, ES and LS, while VLS and ELS gave smallest GY. When GY and the correlations between GY and stress tolerance indices were considered, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom26’ performed best under heat stress, regardless of location or sowing date. In contrast, ‘BARI Gom 27’ and ‘BAW 1130’ were susceptible to heat stress in all locations in both years. Ranking of genotypes and environments using GGE biplot analysis for yield stability showed ‘BAW1140’ to be most stable, followed by ‘BARI Gom 28’ and ‘BARI Gom 26’. Wheat sown on November 20 resulted in highest GY but that sown on December 30 resulted in lowest GY in both years. In conclusion, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom 26’ are the recommended wheat genotypes for use under prevailing conditions in Bangladesh.

Keywords: GGE biplot analysis; grain yield; heat stress; wheat genotypes


  • Acevedo E., Silva P., Silva H., Wheat growth and physiology. In: Curtis, B.C. (Ed.), Bread Wheat: Improvement and Production, FAO Plant Production and Protection Series No. 30. Rome, Italy, 2002, p. 567. <http://www.fao.org/docrep/006/y4011e/y4011e00.htm>, (Last accessed on September 25, 2018).Google Scholar

  • BBS (Bangladesh Bureau of Statistics), Statistical year book of Bangladesh. Statistics Division, Ministry of Finance and Planning, Government of Peoples Republic of Bangladesh, 2016, Dhaka.Google Scholar

  • Chakrabarti B., Singh S.D., Nagarajan S., Aggarwal P.K., Impact of temperature on phenology and pollen sterility of wheat varieties. Aust. J. Crop Sci., 2011, 5(8), 1039-1043.Google Scholar

  • CIMMYT and ICARDA, WHEAT-Global Alliance for Improving Food Security and the Livelihoods of the Resources-Poor in the Developing World. Proposal submitted by CIMMYT and ICARDA to the CGIAR consortium board, in collaboration with Bioversity, ICRISAT, IFPRI, ILRI, IRRI, IWMI, 86 NARS Institute, 13 Regional and International Organizations, 71 Universities and Advance Research Institutes, 15 Private Sector Organizations, 14 NGOs and Farmers Cooperatives and 20 Host Countries, 2011, 197pp. <www.cimmyt.org/.../503-wheat-global-alliance-for-improvingfood->, (Last accessed on September 25, 2018).Google Scholar

  • Faisal I.M., Parveen S., Food security in the face of climate change, population growth, and resource constraints: implications for Bangladesh. Environ. Manag., 2004, 34(4), 487-498. Doi: 10.1007/s00267-003-3066-7Google Scholar

  • Farooq M., Bramley H., Palta J.A., Siddique K.H., Heat stress in wheat during reproductive and grain‐filling phases. Crit. Rev. Plant Sci., 2011, 30, 491-507. Doi: 10.1080/07352689.2011.615687Google Scholar

  • FRG (Fertilizer Recommendation Guide), Fertilizer Recommendation Guide-2012, Bangladesh Agricultural Research Council, Farmgate, Dhaka 1215, 2012, 274 p.Google Scholar

  • Frutos E., Galindo M.P., Leiva,V., An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Env. Res. Risk A., 2014, 28 (7), 1629-1641. Doi: 10.1007/s00477-013-0821-zGoogle Scholar

  • Gabriel K.R., The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58, 453-467.Google Scholar

  • Hossain A., Teixeira da Silva J.A., Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Not. Sci. Biol., 2012, 4(3), 97-109. Doi: 10.15835/nsb437879Google Scholar

  • Hossain A., Teixeira da Silva J.A. Wheat production in Bangladesh: its future in the light of global warming. AoB Plants 5: pls042, 2013. Doi: 10.1093/aobpla/pls042, 2013Google Scholar

  • Hossain A., Sarker M.A.Z., Hakim M.A., Lozovskaya M.V., Zvolinsky V.P., Effect of temperature on yield and some agronomic characters of spring wheat (Triticum aestivum L.) genotypes. Int. J. Agril. Res. Innov. Tech., 2011, 1(1), 44-54.Google Scholar

  • Hossain A., Teixeira da Silva J.A., Lozovskaya M.V., Zvolinsky V.P., Mukhortov V.I., High temperature combined with drought affect rainfed spring wheat and barley in south-eastern Russia: Yield, relative performance and heat susceptibility index. J. Plant Breed. Crop Sci., 2012a, 4(11), 184-196. Doi: 10.5897/JPBCS12.047Google Scholar

  • Hossain A., Lozovskaya M.V., Zvolinsky V.P., Teixeira da Silva J.A., Effect of soil and climatic conditions on phenology of spring wheat varieties in northern Bangladesh. J. Fund. Appl. Sci., 2012b, 2(39), 78-86. <http://inter.aspu.ru/sections/195.html>, (Last accessed on September 25, 2018).Google Scholar

  • Hussain S., Jamil M., Napar A.A., Rahman R., Bano A., Afzal F., Kazi A.G., Mujeeb-Kazi A., Heat stress in wheat and interdisciplinary approaches for yield maximization, in Plant-Environment Interaction: Responses and Approaches to Mitigate Stress (Eds., Azooz M.M., Ahmad P.), John Wiley and Sons, Ltd, Chichester, UK., 2016. Doi: 10.1002/9781119081005.ch9Google Scholar

  • IPCC, Chapter 5, coastal systems and low-lying areas. In: Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Girma B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., White L.L. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2014, 1132 pp.Google Scholar

  • Jahan M.A.H.S., Hossain A., Timsina J., Teixeira da Silva, J.A., Evaluation of six irrigated spring wheat (Triticum aestivum L.) genotypes tolerant to heat stress using stress tolerance indices and correlation analysis. Int. J. Agric. Res., 2018. <http://docsdrive.com/pdfs/academicjournals/ijar/0000/90650-90650.pdf>, (Last accessed on September 25, 2018).Google Scholar

  • Khan A.A., Kabir M.R., Evaluation of spring wheat genotypes (Triticum aestivum L.) for heat stress tolerance using different stress tolerance indices. Cercet. Agron. Mold., 2014, 47(4), 49-63. Doi: 10.1515/cerce-2015-0004Google Scholar

  • Koutis K., Mavromatis A.G., Baxevanos D., Koutsika-Sotiriou, M., Multi-environmental evaluation of wheat landraces by GGE biplot analysis for organic breeding. Agric. Sci., 2012, 3(1), 66-74. Doi: 10.4236/as.2012.31009Google Scholar

  • Lobell D.B., Burke M.B., Tebaldi C., Mastrandrea M.D., Falcon W.P., Naylor R.L., Supporting online materials for: Prioritizing climate change adaptation needs for food security in 2030. Science, 2008, 319, 607-610. DOI: 10.1126/science.1152339Google Scholar

  • Mahboob A.S., Arain M.A., Khanzada S., Naqvi M.H., Dahot M.U., Nizamani N.A., Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pak. J. Bot., 2005, 37(3), 575-584.Google Scholar

  • Mondal S., Singh R.P., Mason E.R., Huerta-Espino J., Autrique E., Joshi A.K., Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crop Res., 2016, 192, 78-85. Doi: 10.1016/j.fcr.2016.04.017Google Scholar

  • OECD-FAO, Agricultural outlook 2009-2018. Published in 2009. <www.agri-outlook.org>, (Last accessed on September 25, 2018).Google Scholar

  • Ramya K.T., Jain N., Gandhi N., Arora A., Singh P.K., Singh A.M., Singh G.P., Prabhu K.V., Assessing heat stress tolerance and genetic diversity among exotic and Indian wheat genotypes using simple sequence repeats and agro-physiological traits. Plant Genet. Resour., 2015, 1-13. Doi: 10.1017/S1479262115000532.Google Scholar

  • Rosegrant MW, Agcaoili M., Global food demand, supply, and price prospects to 2010. International Food Policy Research Institute, Washington, D.C. USA, 2010.Google Scholar

  • R Core Team., R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0, URL <http://www.R-project.org/>, (Last accessed on September 25, 2018).Google Scholar

  • Timsina J., Singh U., Badaruddin M., Meisner C., Cultivar, nitrogen, and moisture effects on a rice-wheat sequence: experimentation and simulation. Agron. J., 1998, 90: 119-130 Doi:10.2134/agronj1998.00021962009000020001xGoogle Scholar

  • Timsina J., Jat M.L., Majumdar K., Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant and Soil, 2010, 335, 65-82. Doi. org/10.1007/s11104-010-0418-yGoogle Scholar

  • Timsina J., Wolf J., Guilpart N., van Bussel L.G.J., Grassini P., van Wart J., Hossain A., Rashid H., Islam S., van Ittersum M.K., Can Bangladesh produce enough cereals to meet future demand? Agric. Syst., 2018, 163, 36-44. Doi: 10.1016/j.agsy.2016.11.003.Google Scholar

  • Wahid A., Gelani S., Ashraf M., Foolad M.R., Heat tolerance in plants: An overview. Environ. Exp. Bot., 2007, 61, 199-233. Doi. org/10.1016/j.envexpbot.2007.05.011Google Scholar

  • Wheeler T., von Braun T., Climate change impacts on global food security. Science, 2013, 341(6145), 508-513. Doi: 10.1126/science.1239402.Google Scholar

  • Yan W., Tinker N.A., Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant Sci., 2006, 86, 623-645. Doi: 10.4141/P05-169.Google Scholar

About the article

Received: 2018-04-17

Accepted: 2018-09-06

Published Online: 2018-10-18

Published in Print: 2018-10-01

Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 404–413, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0045.

Export Citation

© by Akbar Hossain et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in