Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

1 Issue per year

Covered by: Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Microalgae based innovative animal fat and proteins replacers for application in functional baked products

Maria-Styliani-Georgia Kafyra
  • Corresponding author
  • School of Chemical Engineering, National Technical University of Athens Zografou Campus, Athens GR-15700, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sofia Papadaki
  • School of Chemical Engineering, National Technical University of Athens Zografou Campus, Athens GR-15700, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marios Chronis
  • School of Chemical Engineering, National Technical University of Athens Zografou Campus, Athens GR-15700, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalini Krokida
  • School of Chemical Engineering, National Technical University of Athens Zografou Campus, AthensGR-15700, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/opag-2018-0047


Animal fat and proteins, such as milk butter and eggs, are the main ingredients of baked products, and are frequently blamed for food allergies, obesity, cancer and type II diabetes. Therefore, there is an urgent need to replace these ingredients with healthier ones without degrading the organoleptic characteristics of the final product. Microalgae are a great source of protein, minerals and lipids such as omega-3 and omega-6 fatty acids, which are beneficial for human health, offering multiple health benefits such as antioxidant and anti-aging activity. In this study, Chlorella vulgaris microalgae were the selected raw material for the innovative replacers because of their high content in proteins and polyunsaturated fatty acids. The obtained microalgal oil was colour corrected and used to produce brioche-type baked products with 100% animal fat substitution. For protein recovery, the aquatic extract was freeze-dried, producing a dry protein powder that fully substituted the animal protein in the baked products. Finally, the development of bakery products with 100% replacement of both animal fat and protein was achieved. These innovative bakery products showed equal performance to the commercial ones, and even improved organoleptic characteristics according to the sensorial analysis that occurred.

Keywords: Chlorella vulgaris; lipids extraction; microalgae; protein extraction; ultrasound extraction


  • Ainsworth E.A., Gillespie K.M., Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin- Ciocalteu reagent, Nat. Protoc., 2007, 2, 875-877Google Scholar

  • Álvarez R., Vaz B., Gronemeyer H., De Lera R.A., Functions, therapeutic applications, and synthesis of retinoids and carotenoids, Chem. Rev., 2014, 114, 1-125Google Scholar

  • Barbarino E., Lourenço S.O., An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae, J. Appl. Phycol., 2005, 17, 447-460Google Scholar

  • Becker E.W., Micro algae as a source of protein, Biotechnol. Adv., 2007, 25, 207-210Google Scholar

  • Ben-Amotz A., Avron M., On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil., Plant Physiol., 1983, 72, 593-597Google Scholar

  • Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding, Anal. Biochem., 1976, 72, 248-254Google Scholar

  • Chemat F., Rombaut N., Sicaire A.G., Meullemiestre A., Fabiano- Tixier A.S., Abert-Vian M., Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrason. Sonochem., 2017, 34, 540-560Google Scholar

  • Crawford M.A., Nutritional Control of Heart Disease and Cancer: Are Different Diets Necessary, Nutr. Health, 1985, 4, 7-15Google Scholar

  • Da Boit M., Hunter A.M., Gray S.R., Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance, Metabolism., 2017, 66, 45-54Google Scholar

  • DeLany J.P., Windhauser M.M., Champagne C.M., Bray G.A., Differential oxidation of individual dietary fatty acids in humans, Am. J. Clin. Nutr., 2000, 72, 905-911Google Scholar

  • Duong-Ly K.C., Gabelli S.B., Salting out of proteins using ammonium sulfate precipitation, Methods Enzymol., 2014, 541, 85-94Google Scholar

  • Halim R., Danquah M.K., Webley P.A., Extraction of oil from microalgae for biodiesel production: A review, Biotechnol. Adv., 2012, 30, 709-732Google Scholar

  • Hariri N., Thibault L., High-fat diet-induced obesity in animal models, Nutr. Res. Rev., 2010, 23, 270-299Google Scholar

  • Hooper L., Summerbell C.D., Thompson R., Sills D., Roberts F. G., Moore H. J., et al., Reduced or modified dietary fat for preventing cardiovascular disease, Sao Paulo Med. J., 2016, 134, 182-183Google Scholar

  • Jeffrey S.W., Mantoura R.F.C., Wright S.W., Phytoplankton pigments in oceanography, 1997, 77, 918Google Scholar

  • Kasperczyk S., Dobrakowski M., Kasperczyk J., Ostałowska A., Zalejska-Fiolka J., Birkner E., Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers, Toxicol. Appl. Pharmacol., 2014, 280, 36-41Google Scholar

  • Kjeldahl J.G.C.T., Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern, Fresenius, Zeitschrift f. anal. Chemie, 1883, 22, 366-382Google Scholar

  • Kovač D., Simeunović J., Babić O., Mišan A.Č., Milovanović I.L., Algae in food and feed, Food Feed Res., 2013, 40, 21-32Google Scholar

  • List G.R., Bleaching and Purifying Fats and Oils: Theory and Practice, 2nd ed., AOCS Press, 2009Google Scholar

  • Lucca P.A., Tepper B.J., Fat replacers and the functionality of fat in foods, Trends Food Sci. Technol., 1994, 5, 12-19Google Scholar

  • Mickleborough T.D., Omega-3 polyunsaturated fatty acids in physical performance optimization, Int. J. Sport Nutr. Exerc. Metab., 2013, 23, 83-96Google Scholar

  • Nanditha B., Prabhasankar P., Antioxidants in bakery products: a review., Crit. Rev. Food Sci. Nutr., 2009, 49, 1-27Google Scholar

  • Page K.A., Chan O., Arora J., Belfort-DeAguiar R., Dzuira J., Roehmholdt B., et al., Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways, JAMA, 2013, 309, 63Google Scholar

  • Panahi Y., Mostafazadeh B., Abrishami A., Saadat A., Beiraghdar F., Tavana S., et al., Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers, Clin. Lab., 2013, 59, 579-587Google Scholar

  • Pepino M.Y., Metabolic effects of non-nutritive sweeteners, Physiol. Behav., 2015, 152, 450-455Google Scholar

  • Safi C., Ursu A.V., Laroche C., Zebib B., Merah O., Pontalier P.Y., et al., Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods, Algal Res., 2014, 3, 61-65Google Scholar

  • Shankar P., Ahuja S., Sriram K., Non-nutritive sweeteners: Review and update, Nutrition, 2013, 29, 1293-1299Google Scholar

  • Song J., Braun G., Bevis E., Doncaster K., A simple protocol for protein extraction of racalcitrant fruit tissues suitable for 2-DE and MS analysis, Electrophoresis, 2006, 27, 3144-3151Google Scholar

  • Stanhope K.L., Schwarz J.-M., Havel P.J., Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies., Curr. Opin. Lipidol., 2013, 24, 198-206Google Scholar

  • Suez J., Korem T., Zeevi D., Zilberman-Schapira G., Thaiss C.A., Maza O., et al., Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature, 2014, 514, 181-186Google Scholar

  • Tajima M., Ikarashi N., Imahori Y., Okaniwa T., Saruta K., Ishii M., et al., Consumption of a high-fat diet during pregnancy decreases the activity of cytochrome P450 3a in the livers of offspring, Eur. J. Pharm. Sci., 2012, 47, 108-116Google Scholar

  • Tokuşoglu O., Uunal M.K., Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana, J. Food Sci., 2003, 68, 1144-1148Google Scholar

  • Villareal L.M.A., Cruz R.A.M., Ples M.B., Vitor R.J.S., Neurotropic effects of aspartame, stevia and sucralose on memory retention and on the histology of the hippocampus of the ICR mice (Mus musculus), Asian Pac. J. Trop. Biomed., 2016, 6, 114-118Google Scholar

  • Wu J., Muir A.D., Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin, J. Food Sci., 2008, 73, 210-216Google Scholar

  • Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., et al., 2001, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity., Nat. Med., 7, 941-946.Google Scholar

About the article

Received: 2018-02-07

Accepted: 2018-08-14

Published Online: 2018-10-18

Published in Print: 2018-10-01

Citation Information: Open Agriculture, Volume 3, Issue 1, Pages 427–436, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2018-0047.

Export Citation

© by Maria-Styliani-Georgia Kafyra et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in