Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture


Covered by: Elsevier - SCOPUS

Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 0.78

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.916

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

Biodynamic preparations on static pile composting from prickly pear cactus and moringa crop wastes

Heberto Antonio Rodas-Gaitán / José Manuel Palma-García
  • University Center of Agro-livestock Research and Development, University of Colima, Colima-28100, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilio Olivares-Sáenz / Edgar Vladimir Gutiérrez-Castorena / Rigoberto Vázquez-Alvarado
Published Online: 2019-06-03 | DOI: https://doi.org/10.1515/opag-2019-0023

Abstract

Biodynamic agriculture, which considered biodynamic preparations (BP) and compost as essential to farms sustainability, surged as an alternative almost a century ago. Composting is a way to obtain either biofertilizers or soil amendments, whereas the static piles method reduces energy and cost because no turnings are needed. The present study aims to evaluate the BP effect on physical, chemical and biological properties of static piles compost from prickly pear cactus and moringa crop wastes (regional principal substrates) over 100 days of composting. The experiment was carried out in an organic farm (Nuevo León, Mexico) considering four treatments: T1, Prickly pear cactus+BP; T2, Moringa+BP; T3, Prickly pear cactus and T4, Moringa. Results showed significantly higher bacterial activity (p<0.05) in T1 (until 1.38x1010 CFU), therefore it had the highest temperatures and mineralization. Treatments with prickly pear cactus attained the highest temperatures, compared with those with moringa (significantly in 71% of total sampling days, p<0.05). An aerobic environment was maintained by the passive aeration system (holed PVC pipes placed at the bottom layer). The final material was considered to be sanitized, according to Enterobacteriaceae, Escherichia coli and Salmonella/Shigella analysis for quality control. Results indicate the BP efficiency on regional substrates decomposition, by using the static piles method.

Keywords: microorganisms; mineralization; Moringa oleifera; Opuntia ficus-indica; principal component analysis

References

  • Barberi P., Weed management in organic agriculture: Are we addressing the right issues?, Weed Res., 2002, 42(3), 177–193CrossrefGoogle Scholar

  • Bustamante M.A., Paredes C., Marhuenda-Egea F.C., Pérez-Espinosa A., Bernal M.P., Moral R., Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability, Chemosphere, 2008, 72(4), 551–557CrossrefPubMedWeb of ScienceGoogle Scholar

  • Carpenter-Boggs L., Reganold J.P., Kennedy A.C., Effects of biodynamic preparations on compost development, Biol. Agric. Hortic., 2000, 17(4), 313–328CrossrefGoogle Scholar

  • Cayuela M.L., Millner P.D., Meyer S.L.F., Roig A., Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes, Sci. Total Environ., 2008, 399(1-3), 11–18Web of ScienceGoogle Scholar

  • Deportes I., Benoit-Guyod J.L., Zmirou D., Bouvier M.C., Microbial disinfection capacity of municipal solid waste (MSW) composting, J. Appl. Microbiol., 1998, 85(2), 238–246Google Scholar

  • Droffner M.L., Brinton W.F., Survival of E. coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes, Zbl. Hyg. Umweltmed., 1995, 197(5), 387–397Google Scholar

  • Escudero A., González-Arias A., del Hierro O., Pinto M., Gartzia- Bengoetxea N., Nitrogen dynamics in soil amended with manures composted in dynamic and static systems, J. Environ. Manage., 2012, 108, 66–72Google Scholar

  • Etheridge R.D., Pesti G.M., Foster E.H., A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory, Anim. Feed Sci. Tech., 1998, 73(1-2), 21–28Google Scholar

  • Gantzer C., Gaspard P., Galvez L., Huyard A., Dumouthier N., Schwartzbrod J., Monitoring of bacterial and parasitological contamination during various treatment of sludge, Water Res., 2001, 35(16), 3763–3770CrossrefGoogle Scholar

  • Gebresamuel N., Gebre-Mariam T., Comparative physico-chemical characterization of the mucilages of two cactus pears (Opuntia spp.) obtained from Mekelle, Northern Ethiopia, J. Biomater. Nanobiotech., 2012, 03(01), 79–86Google Scholar

  • Gigliotti G., Proietti P., Said-Pullicino D., Nasini L., Pezzolla D., Rosati L., et al., Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality, Int. Biodeter. Biodegr., 2012, 67, 8-14Web of ScienceGoogle Scholar

  • Hess T.F., Grdzelishvili I., Sheng H., Hovde C.J., Heat Inactivation of E. coli During Manure Composting, Compost Sci. Util., 2004, 12(4), 314–322CrossrefGoogle Scholar

  • Hubbe M.A., Nazhad M., Sánchez C., Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A Review, Bioresources, 2010, 5(4), 2808–2854Google Scholar

  • Isobaev P., Bouferguene A., Wichuk K.M., McCartney D., An enhanced compost temperature sampling framework: Case study of a covered aerated static pile, Waste Manage., 2014, 34(7), 1117–1124Web of ScienceCrossrefGoogle Scholar

  • Jiang T., Schuchardt F., Li G., Guo R., Zhao Y., Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting, J. Environ. Sci., 2011, 23(10), 1754-1760Web of ScienceGoogle Scholar

  • Krey T., Vassilev N., Baum C., Eichler-Löbermann B., Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions, Eur. J. Soil Biol., 2013, 55, 124–130Web of ScienceCrossrefGoogle Scholar

  • Lung A.J., Lin C.M., Kim J.M., Marshall M.R., Nordstedt R., Thompson N.P., et al., Destruction of Escherichia coli O157:H7 and Salmonella enteritidis in cow manure composting, J. Food Protect., 2001, 64(9), 1309–1314Google Scholar

  • Luo W., Chen T.B., Zheng G.D., Gao D., Zhang Y.A., Gao W., Effect of moisture adjustments on vertical temperature distribution during forced-aeration static-pile composting of sewage sludge, Resour. Conserv. Recy., 2008, 52(4), 635–642Web of ScienceCrossrefGoogle Scholar

  • Masson P., Masson V., Landwirtschaft, Garten- und Weinbau biodynamisch, AT Verlag, Deutschland, 2013Google Scholar

  • Matsuhiro B., Lillo L.E., Sáenz C., Urzúa C.C., Zárate O., Chemical characterization of the mucilage from fruits of Opuntia ficus indica, Carbohyd. Polym., 2006, 63(2), 263–267Google Scholar

  • Mäder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U. Soil fertility and biodiversity in organic farming, Sci., 2002, 296(5573), 1694-1697Google Scholar

  • Nasini L., De Luca G. de, Ricci A., Ortolani F., Caselli A., Massaccesi L., et al., Gas emissions during olive mill waste composting under static pile conditions, Int. Biodeter. Biodegr., 2016, 107, 70–76CrossrefGoogle Scholar

  • Pfeiffer E., Pfeiffer´s introduction to biodynamics, Floris Books, United Kingdom, 2011Google Scholar

  • Reeve J.R., Carpenter-Boggs L., Reganold J.P., York A.L., Brinton W.F., Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth, Bioresource Technol., 2010, 101(14), 5658–5666Web of ScienceGoogle Scholar

  • Sen B., Chandra T.S., Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes, Bioresource Technol., 2007, 98(8), 1680–1683Web of ScienceGoogle Scholar

  • Sepúlveda E., Sáenz C., Aliaga E., Aceituno C., Extraction and characterization of mucilage in Opuntia spp, J. Arid Environ., 2007, 68(4), 534–545Web of ScienceCrossrefGoogle Scholar

  • Singh D.P., Singh, H.B., Prabha R., Microbial inoculants in sustainable agricultural productivity: Vol. 1 research perspectives, Springer, New York, United States of America, 2016Google Scholar

  • Solano M.L., Iriarte F., Ciria P., Negro M.J., SE- structure and environment: performance characteristics of three aeration systems in the composting of sheep manure and straw., J. Agr. Eng. Res., 2001, 79(3), 317-329CrossrefGoogle Scholar

  • Sradnick A., Murugan R., Oltmanns M., Raupp J., Joergensen R.G., Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer, Appl. Soil Ecol., 2013, 63, 23-28Web of ScienceCrossrefGoogle Scholar

  • Steiner, R., Curso sobre agricultura biológico-dinámica, Rudolf Steiner, Madrid, España, 2009Google Scholar

  • Stoffella P.J., Kahn B.A., Compost utilization in horticultural cropping systems, First Edition, CRC Press, Boca Raton, Flor., 2006Google Scholar

  • Tatàno F., Pagliaro G., Di Giovanni P., Floriani E., Mangani F., Biowaste home composting: Experimental process monitoring and quality control, Waste Manage., 2015, 38, 72–85Google Scholar

  • Turner C., The thermal inactivation of E. coli in straw and pig manure, Bioresource Technol., 2002, 83(1), 57-61Google Scholar

  • United States Environmental Protection Agency (US EPA), Biosolids technology fact sheet use of composting for biosolids management, EPA/832-F-02-024, 2002Google Scholar

  • Villanueva-Rey P., Vázquez-Rowe I., Moreira M.T., Feijoo G., Comparative life cycle assessment in the wine sector: Biodynamic vs. conventional viticulture activities in NW Spain, J. Clean. Prod., 2014, 65, 330–341CrossrefWeb of ScienceGoogle Scholar

  • von Wistinghausen C., Scheibe W., von Wistinghausen E., König U. J., La elaboración de los preparados biodinámicos, Editorial Rudolf Steiner, España, 2000Google Scholar

  • Wang L., Oda Y., Grewal S., Morrison M., Michel F.C., Yu Z., Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments, Microb. Ecol., 2012, 63(1), 32–40Web of ScienceGoogle Scholar

  • Yang L., Zhang S., Chen Z., Wen Q., Wang Y., Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge, Bioresource Technol., 2016, 204, 185–191Web of ScienceGoogle Scholar

About the article

Received: 2018-08-30

Accepted: 2019-02-26

Published Online: 2019-06-03


Citation Information: Open Agriculture, Volume 4, Issue 1, Pages 247–257, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2019-0023.

Export Citation

© 2019 Heberto Antonio Rodas-Gaitán et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in