Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS

Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 0.78

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.916

Open Access
See all formats and pricing
More options …

Isolation, characterization and purification of Rhizobium strain to enrich the productivity of groundnut (Arachis hypogaea L.)

Akbar Hossain
  • Corresponding author
  • Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur-5200, Bangladesh, E-mail: akbarhossainwrc@gmail.com
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sunil Kumar Gunri / Manashi Barman / Ayman EL Sabagh
  • Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, 33156 Kafrelsheikh, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime A. Teixeira da Silva
Published Online: 2019-07-19 | DOI: https://doi.org/10.1515/opag-2019-0040


Groundnut (Arachis hypogaea L.) is an important food legume in tropical and subtropical areas because of its ability to adapt to a wide range of agro-climatic regions. Groundnut is usually cultivated in nutrient-poor soil and rain-fed conditions, so average yield tends to be very low relative to potential yield. Even though the nitrogen (N) requirement of groundnut is much higher than cereals due to its high protein content, it has the capacity to meet 60-80% of N-based requirements through symbiotic N fixation via its root nodules. In its symbiotic relationship with legumes, Rhizobium fixes N, thereby positively impacting the content of this nutrient. This study aimed to isolate, characterize and purify microbial strains of Rhizobium specific to groundnut in a bid to increase this legume’s productivity. The research was conducted in the AICRP-Groundnut laboratory and greenhouse of the Directorate of Research, BCKV, in Kalyani, India during October 2016 to March 2017. Two Rhizobium isolates (RhBC and NRA1) were isolated and selected from groundnut pot cultures. After 45 days, NRA1 produced higher plant biomass, longer roots and shoots, more nodules and higher nodule dry weight than RhBC. NRA1 was selected for a future field trial. The two isolated microbial strains will aid in the screening of additional local isolates to test their effectiveness when co-cultured with local groundnut cultivars to increase yield in soil with low fertility.

Keywords: Groundnut; nitrogen; nodulation; Rhizobium


  • [1] Andrews M., Andrews M.E., Specificity in legume-rhizobia symbioses. Int. J. Mol. Sci., 2017, 18(4), 705. doi:10.3390/ijms18040705CrossrefWeb of ScienceGoogle Scholar

  • [2] Arora D.R., The Text Book of Microbiology. New Delhi: CBS Publisher, 2003, pp. 41-48Google Scholar

  • [3] Badawi F.S.F., Biomy A.M.M., Desoky A.H., Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agric. Sci., 2011, 56(1), 17–25Google Scholar

  • [4] Badigannavar A.M., Kale D.M., Murty G.S.S., Assessment of yielding ability of Trombay groundnut varieties through growth analysis. J. Oilseeds Res., 2002, 19, 38–43Google Scholar

  • [5] Bailey W.K., Hammons R.O., Registration of Chico Peanut Germplasm1 (Reg. No. GP 2). Crop Sci., 1975, 15(1), 105–105CrossrefGoogle Scholar

  • [6] BCKV (Bidhan Chandra Krishi Viswavidyalaya)., AICRP-Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya Kalyani, Nadia, West Bengal, India., 2016Google Scholar

  • [7] Bhuiyan M.A.H., Rahman M.M., Khanam D., Khaleque M.A., Nodulation and yield of groundnut in relation to strains of Bradyrhizobium. Bangladesh J. Sci. Indust. Res., 1998, 33(3), 323–326Google Scholar

  • [8] Biswas P., Hosain D., Ullah M., Akter N., Bhuiya M.A.A., Performance of groundnut (Arachis hypogaea L.) under different levels of bradyrhizobial inoculum and nitrogen fertilizer. SAARC J. Agric., 2003, 1, 61–68Google Scholar

  • [9] Brahmaprakash G.P., Girisha H.C., Navi V., Laxmipathy R., Hegde SV., Liquid Rhizobium inoculant formulations to enhance biological nitrogen fixation in food legumes. J. Food Legumes, 2007, 20(1), 75–79Google Scholar

  • [10] de Rosalia C.E., Santos S., da Silva V.S., de Freitas A.D., da Silva A.F., de Vasconcelos Bezerra R., da Silva Ferreira J., Prospecting of efficient rhizobia for peanut inoculation in a Planosol under different vegetation covers. African J. Microb. Res., 2017, 11(4), 123–131Google Scholar

  • [11] Deshwal V.K., Dubey R.C., Maheshwari D.K., Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci., 2003, 84(3), 443–448Google Scholar

  • [12] Dinesh R., Anandaraj M., Kumar A., Bini Y.K., Subila K.P., Aravind R., Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res., 2015, 173, 34–43Web of ScienceGoogle Scholar

  • [13] El-Ghandour I.A., Galal Y.G.M., Soliman S.M., Yield and N2 fixation of groundnut (Arachis hypogaea L.) in response to inoculation with selected Bradyrhizobium strains and mycorrhizal fungi. Egyptian J. Microbiol., 1997, 32(4), 467–480Google Scholar

  • [14] Faddin M.J.F., Biochemical tests for identification of medical bacteria, 3rd ed. Lippincott Williams&Wilkins, Philadelphia, PA, 2000, pp. 363–367Google Scholar

  • [15] Erum S., Asghari B., Variation in phytohormone production in Rhizobium strains at different altitudes of northern areas of Pakistan. Int. J. Agric. Biol., 2008, 10, 536–540Google Scholar

  • [16] FAO (Food and Agricultural Organization)., Data., 2018. http://www.fao.org/faostat/en/#data/QC. Accessed on June 25, 2019

  • [17] Fentahun M., Akhtar M.S., Muleta D., Lemessa F., Isolation and characterization of nitrogen deficit Rhizobium isolates and their effect on growth of haricot bean. African J. Agric. Res., 2013, 8(46), 5942–5952Google Scholar

  • [18] Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.S., Patra J.K., Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res., 2017, 206, 131–140Google Scholar

  • [19] Gunri S.K., Nath R., Gaintait S., Barman M., Paul S., Puste A.M., Bera, P.S., Optimization of kharif groundnut (Arachis hypogaea L.). In: Proceedings of International Symposium on “Eco-Efficiency in Agriculture and Allied Research”, 20–23 January, 2017. Organized by CWSS-BCKV at FACC, Kalyani, Nadia, WB, India, 2017, pp. 281–282Google Scholar

  • [20] Hasan M., Sahid I.B., Evaluation of Rhizobium inoculation in combination with phosphorus and nitrogen fertilization on groundnut growth and yield. J. Agron., 2016, 15(3), 142-146Google Scholar

  • [21] Hemraj V., Diksha S., Avneet G., A review on commonly used biochemical test for bacteria. Innovare J. Life Sci., 2013, 1(1), 1-7Google Scholar

  • [22] IRRI (International Rice Research Institute)., Biometrics and Breeding Informatics: Products STAR Statistical Tool for Agricultural Research. Los Baños, Laguna, Philippines, 2014. http://bbi.irri.org/products. Accessed on 07 April 2019

  • [23] Ishihara M., Matsunaga M., Hayashi N., Tišler V., Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme Microbial. Technol., 2002, 31(7), 986–991CrossrefGoogle Scholar

  • [24] Kale D.M., Mouli C., Murty G.S.S., Rao M.V.P., Development of a new groundnut variety, TG-26, by using induced mutations in cross breeding. Mutation Breed. Newslett., 1997, 43, 25–27Google Scholar

  • [25] Kale DM, Murty GSS, Badigannavar AM, Dhal JK (2009) New Trombay groundnut variety TG 51 for commercial cultivation in India. J. SAT Agric. Res., 2009, 7. http://ejournal.icrisat.org/Volume7/Groundnut/GN702.pdf. Accessed on June 25, 2019

  • [26] Kenasa G., Jida M., Assefa F., Characterization of phosphate solubilizing faba bean (Vicia faba L.) nodulating rhizobia isolated from acidic soils of Wollega, Ethiopia. Sci. Technol, Arts Res. J., 2014, 3(3), 11–17Google Scholar

  • [27] Kneen B.E., LaRue T.A., Congo red absorption by Rhizobium leguminosarum. Appl. Environ. Microbiol., 1983, 45(1), 340-342Google Scholar

  • [28] Koser S.A., Utilization of the salts of organic acids by the colonaerogenes group. J. Bacteriol., 1923, 8(5), 493–520Google Scholar

  • [29] Kumar A., Meena R.N., Yadav L., Gilotia Y.K., Effect of organic and inorganic sources of nutrient on yield, yield attribute and nutrient uptake of rice cv. PRH-10. The Bioscan, 2014, 9(2), 595–597Google Scholar

  • [30] Küpper F.C., Feiters M.C., Olofsson B., Kaiho T., Yanagida S., Zimmermann M.B., Carpenter L.J., Luther III G.W., Lu Z., Jonsson M., Kloo L., Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew. Chemie Int. Ed., 2011, 50(49), 11598–11620Google Scholar

  • [31] Lamas F.M., Mercante F.M., Otsubo A.A., Passos D.P., Use of inoculant for groundnuts: effects on productivity. Comunicado Técnico - EMBRAPA Agropecuária Oeste, 2000, 28: 5 pp. (in Portuguese with English abstract).Google Scholar

  • [32] Lowe G.H., The rapid detection of lactose fermentation in paracolon organism by demonstration of 6-D-galactosidase. J. Med. Lab. Technol., 1962, 19, 21–25Google Scholar

  • [33] MacFaddin J.F., Biochemical tests for Identification of Medical bacteria. Williams and Wilkins Co., Baltimore, USA, 1976, 51–54Google Scholar

  • [34] Manasa K., Reddy R.S., Triveni S., Kumar B.K., Priya N.G., Characterization of Rhizobium isolates and their potential PGPR characteristics of different rhizosphere soils of Telangana region, India. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(5), 2808–2813CrossrefGoogle Scholar

  • [35] McDevitt S., Methyl red and Voges Proskauer test protocols. American Society for Microbiology, 2009Google Scholar

  • [36] Ondieki D.K., Nyaboga E.N., Wagacha, J.M., Mwaura F.B. Morphological and genetic diversity of Rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of lower eastern Kenya. Int. J. Microbiol., 2017, Article ID 8684921, 9 pp. doi:10.1155/2017/8684921CrossrefGoogle Scholar

  • [37] Pandeeswari N., Kalaiarasu S., Performance of salt tolerant mutant Rhizobia inoculation with graded levels of nitrogen on the growth and yield attributes of groundnut (Arachis hypogaea L.). Int. J. Recent Sci. Res., 2017, 8(4), 16275–16279Google Scholar

  • [38] Pelczar Jr. M.J., Reid R.D., Chan E.C.S., Microbiology, 4th Edition. Tata McGraw-Hill Publishing Company Ltd, New Delhi, 1977Google Scholar

  • [39] Pulatova D.Z., Saimnazarov U.B., Bakhromov I.U., Kozhemyakov A.P., Provorov N.A., Selection of nodule bacteria strains forming effective symbiosis with the peanut under central Asian conditions. Russian Agric. Sci., 1999, 3, 20–24Google Scholar

  • [40] Rahman M.A., Effect of calcium and Bradyrhizobium inoculation of the growth, yield and quality of groundnut (Arachis hypogaea L.). Bangladesh J. Sci. Indust. Res., 2006, 41, 181–188Google Scholar

  • [41] Russell A.D., Hugo W.B., Ayliffe G., Principles and Practice of Disinfection, Sterilization and Preservation. Blackwell Scientific Publications. Oxford, 1982Google Scholar

  • [42] Sadowsky M.J., Keyser H.H., Bohlool B.B., Biochemical characterization of fast- and slow-growing rhizobia that nodulate soybeans. Int. J. Syst. Bacteriol., 33(4), 716–722CrossrefGoogle Scholar

  • [43] Sajid M., Rab A., Wahid F., Shah S.N.M., Jan I., Khan M.A., Hussain S.A., Khan M.A., Iqbal Z., Influence of rhizobium inoculation on growth and yield of groundnut cultivars. Sarhad J. Agric., 2011, 27(4), 573–576Google Scholar

  • [44] Shahzad F., Shafee M., Abbas F., Babar S., Tariq M.M., Ahmad Z., Isolation and biochemical characterization of Rhizobium meliloti from root nodules of alfalfa (Medico sativa L.). J. Anim. Plant Sci., 2012, 22(2), 522–524Google Scholar

  • [45] Sharma P., Sardana V., Kandola S.S., Response of groundnut (Arachis hypogaea L.) to Rhizobium inoculation. Libyan Agric. Res. Center J. Int., 2011, 2, 101–104Google Scholar

  • [46] Singh A.L., Basu M.S., Singh N.B., Potential of groundnut in North Eastern States of India. National Research Centre for groundnut (ICAR), Junagadh, India, 2003, 75 pp.Google Scholar

  • [47] Singh B., Kaur R., Singh K., Characterization of Rhizobium strain isolated from the roots of Trigonella foenumgraecum (fenugreek). African J. Biotechnol., 2008, 7(20), 3671–3676Google Scholar

  • [48] Somasegaran P., Hoben J., Methods in legume-Rhizobium technology, University of Hawaii NifTAL Project and Mircen, Hawaii Institute of Tropical Agriculture and Human Resources, College of Tropical Agriculture, 1985, 367 pp.Google Scholar

About the article

Received: 2018-11-16

Accepted: 2019-05-18

Published Online: 2019-07-19

Published in Print: 2019-01-01

Citation Information: Open Agriculture, Volume 4, Issue 1, Pages 400–409, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2019-0040.

Export Citation

© 2019 Akbar Hossain et al., published De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in