Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture


Covered by: Elsevier - SCOPUS

Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 0.78

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.916

Open Access
Online
ISSN
2391-9531
See all formats and pricing
More options …

The effect of horn-manure preparation on enzymes activity and nutrient contents in soil as well as great pumpkin yield

Edita Juknevičienė / Honorata Danilčenko / Elvyra Jarienė / Jürgen Fritz
Published Online: 2019-08-21 | DOI: https://doi.org/10.1515/opag-2019-0044

Abstract

This investigation was inspired by an increasing global issue on how to improve soil quality while using alternative preparations instead of synthetic fertilizers. The main aim of a three-year study was to investigate the influence of horn-manure preparation on enzyme activity and nutrient content in soil and pumpkin yield. The results showed that significantly higher amounts of P (respectively 106 and 79 mg kg−1 CAL), K (149 and 106 mg kg−1 CAL), nitrogen (5.41 and 3.21 mg kg−1), ammoniacal nitrogen (9.38 and 3.45 mg kg−1) and mineral nitrogen (7.97 and 5.67 mg kg−1) were measured in the plots where the horn-manure preparation was used. A higher activity of the soil enzymes (urease activity was 1.93 times higher and the saccharase activity was 1.05 times higher) were identified with horn-manure. The average soil CO2 flux (Fc) value, when using horn-manure preparation (from 56 till 70 day), was significantly higher by 5.32% in the middle of the growing season. The yield of pumpkin was significantly increased by 18% with horn manure treatments. Significant positive correlations were identified between pumpkin yield and urease activity, and saccharase activity, as well as soil P and K.

Keywords: Chlorophyll index; Horn-manure preparation; Pumpkins; Soil enzymes

References

  • [1] Bacchus G.L., An evaluation of the influence of biodynamic practices including foliar-applied silica spray on nutrient quality of organic and conventionally fertilised lettuce (Lactuca Sativa L.), Journal of Organic Systems, 2010, 5(01), 4-13Google Scholar

  • [2] Birkhofer K., Bezemer T.M., Bloem J., Bonkowski M., Christensen S., Dubois D., Ekelund F., Fließbach A., Gunst L., Hedlund, K., Mäder P., Mikola J., Robin C., Setälä H., Tatin-Froux F., Van der Putten W.H., Scheu S., Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity, Soil Biology & Biochemistry, 2008, 40(09), 2297-2308Google Scholar

  • [3] Botelho R.V., Roberti R., Tessarin P., García-Mina J.M., Rombolà A.D., Physiological responses of grapevines to biodynamic management, Renewable agriculture and food systems, 2016, 31, 402-413Google Scholar

  • [4] Brock C., Franko U., Oberholzer H.-R., Kuka K., Leithold G., Kolbe H., Reinhold J., Humus balancing in Central Europe – concepts, state of the art and further challenges, J. Plant Nutr. Soil Sci., 2013, 176, 3-11Web of ScienceGoogle Scholar

  • [5] Ciganda V., Gitelson A., Schepers J., Non-destructive determination of maize leaf and canopy chlorophyll content, Journal of Plant Physiology, 2009, 166, 157-167CrossrefWeb of ScienceGoogle Scholar

  • [6] Danilčenko H., Jarienė E., Vaitkevičienė N., Juknevičienė E., Great pumpkins and blue fleshed potatoes – biologically active raw material for food products, IJSR, 2014, 3, 471–473Google Scholar

  • [7] Demeter e. V., Das Präparate-Handbuch – Einführung in die biodynamische Präparatearbeit, 2013, 4-10Google Scholar

  • [8] FAO, How to Feed the World in 2050, High-Level Expert Forum, 12–13 October, Rome, Italy, 2009Google Scholar

  • [9] Fleck M., von Fragstein P., Heß J., Effects of biodynamic spray preparations horn manure and horn silica on yield and sugar content of different cultivated carrots. [Ertrag und Zuckergehalte bei Möhren nach Applikation der biologisch-dynamischen Präparate Hornmist und Hornkiesel in verschiedenen Umwelten ], in: Heß J., Rahmann G, (Ed.): Ende der Nische, Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau, kassel university press GmbH, Kassel, 2005, 89-92Google Scholar

  • [10] Fritz J., and Köpke U., Effects of light, manuring and biodynamic horn silica applications on dwarf beans (Phaseolus vulgaris L. var. nanus) on germination characteristics of newly formed seeds, Pflanzenbauwissenschaften, 2005, 9: 55-60Google Scholar

  • [11] Fritz J., Athmann M., Meissner G., Kauer R., Köpke U., Quality characterization via image forming methods differentiates grape juice produced from integrated, organic or biodynamic vineyards in the first year after conversion, Biological Agriculture & Horticulture, 2017, doi: 10.1080/01448765.2017.1322003CrossrefGoogle Scholar

  • [12] Garcia C., Alvarez C.E., Carracedo A., Iglesias E., Soil fertility and mineral nutrition of a biodynamic avocado plantation in Tenerife, Biological Agric. and Horticulture, 1989, 6, 1-10Google Scholar

  • [13] Giannattasio M., Vendramin E., Fornasier F., Alberghini S., Zanardo M., Stellin F., Concheri G., Stevenato P., Ertani A., Nardi S., Rizzi V., Piffanelli P., Spaccini R., Mazzei P., Piccolo A., Sqartini A., Microbiological features and bioactivity of a fermented manure product (preparation 500horn-manure preparation) used in biodynamic agriculture, J. Microbiol. Biotechnol., 2013, 23, 644-651Google Scholar

  • [14] Goldstein W., Experimental proof for the effects of biodynamic preparations, Internal manuscript, Michael Fields Agric. Institute, East Troy, Wisconsin, 1990Google Scholar

  • [15] Heinze S., Raupp J., Joergensen R.G., Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture, Plant Soil, 2010, 328, 203-215Web of ScienceGoogle Scholar

  • [16] Jariene E., Vaitkeviciene N., Danilcenko H., Gajewski M., Chupakhina G., Fedurajev P., Ingold R. 2015, Influence of biodynamic preparations on the quality indices and antioxidant compounds content in the tubers of coloured potatoes (Solanum tuberosum L.), Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43(2), 392-397Web of ScienceGoogle Scholar

  • [17] Jin K., Sleutel S., Buchan D., De Neve S., Cai D.X., Gabriels D., Jin J.Y., Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau, Soil and Tillage Research, 2009, 104, 115-120Google Scholar

  • [18] Joergensen R.G., Mäder P., Fließbach A., Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism, Biology & Fertility of Soils, 2010, 46(03), 303-307Google Scholar

  • [19] Karlen D.L., Andrew S.S., Doran J.W., Soil quality: Current concepts and applications, Advances in Agronomy, 2001, 74, 1-40Google Scholar

  • [20] Koepf H.H., Research in biodynamic agriculture: methods and results, Bio-Dynamic Farming and Gardening Association, Kimberton, 1993Google Scholar

  • [21] Laghi L., Versari A., Marcolini E., Parpinello G.P., Metabonomic investigation by 1H-NMR to discriminate between red wines from organic and biodynamic grapes, Food and Nutrition Sciences, 2014, 5, 52-59Google Scholar

  • [22] Lüthi T., Demeter – the trademark of the worldwide biodynamic network, In: Hurter U. (Ed.), Agriculture for the Future - Biodynamic Agriculture today, 90 years since Koberwitz, Verlag am Goetheanum, Dornach, Schweiz, 2014, 26-27Google Scholar

  • [23] Mäder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U., Soil Fertility and Biodiversity in Organic Farming, Science, 2002, 296, 1694-1697Google Scholar

  • [24] Monokrousos N., Papatheodorou E.M., Diamantopoulos J.D., Stamou G.P., Soil quality variables in organically and conventionally cultivated field sites, Soil Biology and Biochemistry, 2006, 38, 1282-1289Google Scholar

  • [25] Nara K., Yamaguchi A., Maeda N., Koga H., Antioxidative Activity of Water Soluble Polysaccharide in Pumpkin Fruits (Cucurbita maxima Duchesne), Biosci. Biotechnol. Biochem., 2009, 73, 1416-1418Google Scholar

  • [26] Peregrina F., Pérez-Álvarez E.P., García-Escudero E., Soil microbiological properties and its stratification ratios for soil quality assessment under different cover crop management systems in a semiarid vineyard, J. Plant Nutr. Soil Sci., 2014, 177, 548-559Web of ScienceGoogle Scholar

  • [27] Radha T.K., Rao D.L.N., Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations, Indian Journal of Microbiology, 2014, 54, 413-418Web of ScienceCrossrefGoogle Scholar

  • [28] Raich J.W., Potter C.S., Bhagawati D., Interannual variability in global soil respiration, Global Change Biology, 2002, 8, 800-812Web of ScienceGoogle Scholar

  • [29] Raich J.W., Tufekciogul A., Vegetation and soil respiration: Correlations and controls, Biogeochemistry, 2000, 48, 71-90Google Scholar

  • [30] Raupp J., König U.J., Biodynamic Preparations Cause Opposite Yield Effects Depending upon Yield Levels, Biological Agriculture and Horticulture, 1996, 13, 175–188CrossrefGoogle Scholar

  • [31] Reeve J.R., Capenter-Boggs L., Reganold J.P., York A.L., Brinton W.F., Influence of biodynamic preparations on compost development and resultant compost extracts on wheat seedling growth, Bioresource Technology, 2010, 101, 5658-5666Web of ScienceGoogle Scholar

  • [32] Reganold J.P., Palmer A.S., Lockhart J.C., Macgregor A.N., Soil quality and financial performance on biodynamic and conventional farms in New Zealand, Science, 1993, 260, 344-349Google Scholar

  • [33] Schinner F., Öhlinger R., Kandeler E., Bodenbiologische Arbeitsmethoden, Springer-Verlag, Berlin Heidelberg, 1991, 57-60Google Scholar

  • [34] Sedlmayr A., Inspirational examples of biodynamic practice, In: Hurter U. (Ed.), Agriculture for the Future - Biodynamic Agriculture today, 90 years since Koberwitz, Verlag am Goetheanum, Dornach, Schweiz, 2014, 250Google Scholar

  • [35] Sharma S.K., Laddha K.C., Sharma R.K., Gupt P.K., Chatt L.K., Pareeek P., Application of biodynamic preparations and organic manures for organic production of cumin (Cuminum cyminum L.), International Journal of Seed Spices, 2012, 2(01), 7-11Google Scholar

  • [36] Soustre-Gacougnolle I., Lollier M., Schmitt C., Perrin M., Buvens E., Lallemand J.-F., Mermet M., Henaux M., Thibault-Carpentier C., Dembelé D., Steyer D., Clayeux C., Moneyron A., Masson J.E., responses to climatic and pathogen threats differ in biodynamic and conventional vines, Scientific Reports, 2018, 8, 16857. DOI: 10.1038/s41598-018-35305-7Google Scholar

  • [37] Spaccini R., Mazzei P., Squartini A., Giannattasio M., Piccolo A., Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture, Environmental Science and Pollution Research, 2012, 19, 4214-4225Google Scholar

  • [38] Spiess H., Conventional and biodynamic methods to increase soil fertility [Konventionelle und biologisch-dynamische Verfahren zur Steigerung der Bodenfruchtbarkeit]. PhD thesis, University of Giessen, Giessen, Germany, 1978Google Scholar

  • [39] Sradnick A., Murugan R., Oltmanns M., Raupp J., Joergensen R.G., Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer, Applied Soil Ecology, 2013, 63, 23-28Web of ScienceCrossrefGoogle Scholar

  • [40] Tejada M., Benítez C., Gómez I., Parrado J., Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community, Applied Soil Ecol., 2011, 49, 11-17Web of ScienceGoogle Scholar

  • [41] Trasar-Cepeda C., Leirós M.C., Seoane S., Gil-Sotres F., Limitations of soil enzymes as indicators of soil pollution, Soil Biology and Biochemistry, 2000, 32, 1867–1875Google Scholar

  • [42] Tung L.D., Fernandez P.G., Soybeans under organic, biodynamic and chemical production at the Mekong Delta, Vietnam. Philippine Journal of Crop Science, 2007, 32(02), 49-62Google Scholar

  • [43] Turinek M., Grobelnik-Mlakar S., Bavec M., Bavec F., Biodynamic agriculture research progress and priorities, Renewable Agr. Food Syst., 2009, 24, 146-154Google Scholar

  • [44] Valdez R.E., Fernandez P.G., Productivity and seed quality of rice (Oryza sativa L.) cultivars grown under synthetic, organic fertilizer and biodynamic farming practices, Philippine Journal of Crop Science, 2008, 33(01), 37-58Google Scholar

  • [45] Wu C., Niu Z., Tang Q., Huang W., Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation, Agricultural and Forest Meteorology, 2008, 148, 1230-1241Web of ScienceGoogle Scholar

  • [46] Xu L., Furtaw M.D., Madsen R.A., Garcia R.L., Anderson D.J., McDermitt D.K., On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air, Journal of Geophysical Research, 2006, 111, DO8S10, DOI: 10.1029/2005FD006435CrossrefGoogle Scholar

  • [47] Zaller J.G., Köpke U., Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment, Biol Fertil Soils,2004, 40, 222-229Google Scholar

About the article

Received: 2018-08-30

Accepted: 2019-05-23

Published Online: 2019-08-21


Citation Information: Open Agriculture, Volume 4, Issue 1, Pages 452–459, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2019-0044.

Export Citation

© 2019 Edita Juknevičienė et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christopher Brock, Uwe Geier, Ramona Greiner, Michael Olbrich-Majer, and Jürgen Fritz
Open Agriculture, 2019, Volume 4, Number 1, Page 743

Comments (0)

Please log in or register to comment.
Log in