Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Agriculture

Covered by: Elsevier - SCOPUS

Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 0.78

SCImago Journal Rank (SJR) 2018: 0.246
Source Normalized Impact per Paper (SNIP) 2018: 0.916

Open Access
See all formats and pricing
More options …

Crop growth and viability of seeds on Mars and Moon soil simulants

G.W.W. Wamelink / J.Y. Frissel / W.H.J. Krijnen / M.R. Verwoert
Published Online: 2019-10-02 | DOI: https://doi.org/10.1515/opag-2019-0051


If humans are going to establish a base on the Moon or on Mars they will have to grow their own crops. An option is to use Lunar and Martian regolith. These regoliths are not available for plant growth experiments, therefore NASA has developed regolith simulants. The major goal of this project was to cultivate and harvest crops on these Mars and Moon simulants. The simulants were mixed with organic matter to mimic the addition of residues from earlier harvests. Ten different crops, garden cress, rocket, tomato, radish, rye, quinoa, spinach, chives, pea and leek were sown in random lines in trays. Nine of the ten species grew well with the exception of spinach. It was possible to harvest edible parts for nine out of ten crops. The total biomass production per tray was highest for the Earth control and Mars soil simulant and differed significantly from Moon soil simulant. The seeds produced by three species were tested for germination (radish, rye and cress). The germination on Moon soil simulant was significantly lower in radish than for the Earth control soil.

Keywords: Extra-terrestrial; Food production; Growth experiment; Regolith; Exobiology


  • [1] Baur P.S., Clark R.S., Walkinshaw C.H., Scholes V.E., Uptake and translocation of elements from Apollo 11 lunar material by lettuce seedlings, Phyton, 1974, 32, 133-142Google Scholar

  • [2] Carlton C.A., Morris R.V., Lindstrom D.J., Lindstrom M.M., Lockwood J.P., JSC Mars-1: a Martian soil simulant, Space, 1998, 98Google Scholar

  • [3] Chevrier V., Mathe P.E., Mineralogy and evolution of the surface of Mars: A review. Planetary and Space Science, 2007, 55, 289-314Google Scholar

  • [4] Clark B.C., Van Hart D.C., The Salts of Mars, Icarus, 1981, 45, 370-378Google Scholar

  • [5] Clark B.C., Geochemical components in Martian soil. Geochimica et Cosmochimica acta, 1993, 57, 4575-4581CrossrefGoogle Scholar

  • [6] Cooper M., Douglas G., Perchonok M., Developing the NASA Food System for Long-Duration Missions, Journal of Food Science, 2011, 76, R40-R48CrossrefWeb of ScienceGoogle Scholar

  • [7] Cousins C.R., Cockell C.S., An ESA roadmap for geobiology in space exploration, Acta Astronautica, 2016, 118, 286-295Web of ScienceGoogle Scholar

  • [8] Dueck T., Kempkes F., Meinen E., Stanghellini C. 2016, Choosing crops for cultivation in space. ICES-2016-206. 46th International Conference on Environmental Systems ICES-2016-206 10-14 July 2016, Vienna, Austria. https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/67596/ICES_2016_206.pdf?sequence=1

  • [9] Ferl R.J., Paul A.L, Lunar Plant Biology—A Review of the Apollo Era. Astrobiology, 2010, 10, 261-274Google Scholar

  • [10] Foley C.N., Economou T., Clayton R.N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, Journal of Geophysical Research, 2003, 108, 37-1 – 37-21Google Scholar

  • [11] Gibson, E.K., Volatile elements, carbon, nitrogen, sulfur, sodium, potassium and rubidium in the lunar regolith, Phys. Chem. Earth., 1977, Vol. X, 57-62CrossrefGoogle Scholar

  • [12] Graham T., Bamsey M., Editor’s Note for the topical issue ‘Agriculture in Space’, Open Agriculture, 2016, 1, 68-68Google Scholar

  • [13] Hui H., Peslier A.H., Zhang Y., Neal C.R., Water in lunar anorthosites and evidence for a wet early Moon, Nature Geoscience, 2013, 6, 177-180Web of ScienceCrossrefGoogle Scholar

  • [14] Kozyrovska N.O., Lutvynenko T.L., Korniichuk O.S., Kovalchuk M.V., Voznyuk T.M., Kononuchenko O., Zaetz I., Rogutskyy I.S., Mytrokhyn O.V., Mashkovska S.P., Foing B.H., Kordyum V.A., Growing pioneer plants for a lunar base, Advances in Space Research, 2006, 7, 93-99CrossrefGoogle Scholar

  • [15] Maggi F., Pallud C., Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station. Planetary and Space Science, 2010, 58, 1996-2007Google Scholar

  • [16] Mancinelli R.L., Banin A., Where is the nitrogen on Mars? International Journal of Astrobiology, 2003, 2, 217-225CrossrefGoogle Scholar

  • [17] Meinen E., Dueck T., Kempkes F., Stanghellini C., Growing fresh food on future space missions: Environmental conditions and crop management. Scientia Horticulturae, 2018, 235, 270-278Google Scholar

  • [18] Möhlmann D.T.F., Water in the upper Martian surface at mid- and low-latitudes: Presence, state, and consequences, Icarus, 2004, 168, 318-323Google Scholar

  • [19] Perchonok M., Bourland C., NASA Food Systems: Past, Present, and Future, Nutrition, 2002, 18, 913-920Google Scholar

  • [20] Rickman D., McLemore C.A., Fikes J., Characterization summary of JSC-1a bulk lunar mare regolith simulant, 2007, http://www.orbitec.com/store/JSC-1AF_Characterization.pdf

  • [21] Wamelink G.W.W., Goedhart P.W., Dobben H.F. van, Berendse F., Plant species as predictors of soil pH: replacing expert judgement by measurements, Journal of Vegetation Science, 2005, 16, 461-470CrossrefGoogle Scholar

  • [22] Wamelink G.W.W., Frissel J.Y., Krijnen W.H.J., Verwoert M.R., Goedhart P.W., Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants, PLoS ONE, 2014, 9(8), e103138. doi:10.1371/journal.pone.0103138Google Scholar

  • [23] Zaets I., Burlak O., Rogutskyy I., Vasilenkoa A., Mytrokhyn O., Lukashov D., Foing B., Kozyrovsk N., Bioaugmentation in growing plants for lunar bases, Advances in Space Research, 2011, 47, 1071-1078Google Scholar

About the article

Received: 2019-02-05

Accepted: 2019-08-12

Published Online: 2019-10-02

Citation Information: Open Agriculture, Volume 4, Issue 1, Pages 509–516, ISSN (Online) 2391-9531, DOI: https://doi.org/10.1515/opag-2019-0051.

Export Citation

© 2019 G.W.W. Wamelink et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in