Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony

1 Issue per year


Covered by:
Clarivate Analytics - Emerging Sources Citation Index
ERIH PLUS

Open Access
Online
ISSN
2300-6560
See all formats and pricing
More options …

Manual Point Cloud Classification and Extraction for Hunter-Gatherer Feature Investigation: A Test Case From Two Low Arctic Paleo-Inuit Sites

David B. Landry
  • Department of Anthropology, and the Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Brooke Milne
  • Department of Anthropology, and the Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert W. Park / Ian J. Ferguson / Mostafa Fayek
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/opar-2016-0017

Abstract

For archaeologists, the task of processing large terrestrial laser scanning (TLS)-derived point cloud data can be difficult, particularly when focusing on acquiring analytical and interpretive outcomes from the data. Using our TLS lidar data collected in 2013 from two compositionally different, low Arctic multi-component hunter-gatherer sites (LdFa-1 and LeDx-42), we demonstrate how a manual point cloud classification approach with open source software can be used to extract natural and archaeological features from a site’s surface. Through a combination of spectral datasets typical to TLS (i.e., intensity and RGB values), archaeologists can enhance the visual and analytical representation of archaeological huntergatherer site surfaces. Our approach classifies low visibility Arctic site point clouds into independent segments, each representing a different surface material found on the site. With the segmented dataset, we extract only the surface boulders to create an alternate characterization of the site’s prominent features and their surroundings. Using surface point clouds from Paleo-Inuit sites allows us to demonstrate the value of this approach within hunter-gatherer research as our results illustrate an effective use of large TLS datasets for extracting and improving our analytical capabilities for low relief site features.

Keywords: terrestrial laser scanning; digital archaeology; hunter-gatherer archaeology; Paleo-Inuit; Southern Baffin Island; Nunavut; point cloud classification

References

  • Abbas, M. A., Luh, L. C., Setan, H., Majid, Z., Chong, A. K., Aspuri, A., Idris, K. M., & Ariff, M. F. M. (2014). Terrestrial laser scanners pre-processing: Registration and georeferencing. Jurnal Teknologi, 71(4), 115-122. Google Scholar

  • Bandyopadhyay, M., van Aardt, J. A. N., & Cawse-Nicholson, K. (2013). Classification and extraction of trees and buildings from urban scenes using discrete return LiDAR and aerial colour imagery. In: M. D. Turner, & G. W. Kamerman (Eds.), Laser Radar Technology and Applications XVIII, Proceedings of SPIE 2013, Vol. 8731, 873105. Google Scholar

  • Bielawski, E. (1988). Paleoeskimo variability: The early Arctic Small-Tool tradition in the central Canadian Arctic. American Antiquity, 53, 52-74. CrossrefGoogle Scholar

  • Brodu, N., & Lague, D. (2012). 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134. CrossrefGoogle Scholar

  • Buckley, S. J., Kruz, T. H., Howell, J. A., & Schneider, D. (2013). Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Computers and Geosciences, 54, 249-258. Google Scholar

  • CloudCompare (version 2.6.1) [GPL software]. (2015). Retrieved from http://www.cloudcompare.org/ Google Scholar

  • Dawson, P. C., Bertulli, M. M., Levy, R., Tucker, C., Dick, L., & Cousins, P. L. (2013). Application of 3D laser scanning to the preservation of Fort Conger, a historic polar research base on northern Ellesmere Island, Arctic Canada. Arctic, 66(2), 147–158. CrossrefGoogle Scholar

  • Friesen, T. M. (2015). On the naming of Arctic archaeological traditions: The case for Paleo-Inuit. Arctic, 68(3), iii-iv. CrossrefGoogle Scholar

  • Güth, A. (2012). Using 3D scanning in the investigation of Upper Palaeolithic engravings: first results of a pilot study. Journal of Archaeological Science, 39(10), 3105-3114. CrossrefWeb of ScienceGoogle Scholar

  • Hakonen, A., Kuusela, J-M., & Okkonen, J. (2015). Assessing the application of laser scanning and 3D inspection in the study of prehistoric carin sites: The case study of Tahkokangas, Northern Finland. Journal of Archaeological Science: Reports, 2, 227-234. Google Scholar

  • Huggett, J. (2015). Challenging Digital Archaeology. Open Archaeology, 1(1), 79-85. Google Scholar

  • Huimin, H., Yanmin, W., Chunmei, H., & Guoli, H. (2012). Application of terrestrial LiDAR technology in digital surveying and mapping of the Hall of Preserving Harmony of Forbidden City. Journal of Beijing University of Civil Engineering and Architecture, 3, 009. Google Scholar

  • Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J-L., & Jaboyedoff, M. (2015). Geological layers detection and characterisation using high resolution 3D point clouds: Example of a box-fold in the Swiss Jura Mountains. European Journal of Remote Sensing, 48, 541-568. Google Scholar

  • Isenburg, M. (2015). LAStools efficient tools for LiDAR processing. (Version 1.3). Retrieved from http://lastools.org. Google Scholar

  • Landry, D. B., Ferguson, I. J., Milne, S. B., & Park, R. W. (2015). Combined geophysical approach in a complex arctic archaeological environment: A case study from the LdFa-1 site, southern Baffin Island, Nunavut. Archaeological Prospection, 22(3), 157-170. Web of ScienceGoogle Scholar

  • Larsen, B. P., Holdaway, S. J., Fanning, P. C., Mackrell, T., & Shiner J. I. (in press). Shape and an outcome of formation history: Terrestrial laser scanning of shell mounds from far north Queensland, Australia. Quaternary International, 1-8. Google Scholar

  • Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. CrossrefGoogle Scholar

  • Milne, S. B. (2003). Identifying Pre-Dorset structural features on southern Baffin Island: Challenges and considerations for alternative sampling methods. Inuit Studies, 27(1-2), 67-90. Google Scholar

  • Milne, S. B. (2005). Archaeological investigations in the Mingo and Amadjuak Lake districts of southern Baffin Island. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 04-06A. Nunavut Ministry of Culture, Language, Elders and Youth, Igloolik, Nunavut. Google Scholar

  • Milne, S. B. (2008). Archaeological investigations in the Mingo lake district of southern Baffin Island: Assessing Palaeo-Eskimo culture continuity and change. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 07-014. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut. Google Scholar

  • Milne, S. B. (2013). Chert sourcing and Palaeo-Eskimo stone tool technology. Permit report covering the work conducted under Nunavut Territory Archaeologist Permit No. 2013-02A. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut. Google Scholar

  • Milne, S. B., Park, R. W., & Stenton, D. R. (2012). Dorset culture land use strategies and the case of inland southern Baffin Island. Canadian Journal of Archaeology/Journal Canadien D’Archéologie, 36(2), 267-288. Google Scholar

  • Milne, S. B., Park, R. W., Fayek, M., Stenton, D. R., & Landry, D. B. (2013). Toolstone availability near Frobisher Bay, NU and its implications for Palaeo-Eskimo lithic technological organization. Proceedings of the Canadian Archaeological Association Conference 15-19 May 2013, Whistler, British Columbia. Canada. Google Scholar

  • Niemeyer, J., Rottensteiner, F., & Soergel, U. (2012). Conditional random fields for lidar point cloud classification in complex urban areas. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 1(3), 263-268. Google Scholar

  • Park, R. (2008). Archaeological excavations at the LdFa-1 site, Mingo lake, Baffin Island, Summer 2008 Permit report on work conducted under Nunavut Territory Archaeologist Permit No. 08-029A. University of Waterloo. Google Scholar

  • Penasa, L., Franceschi, M., Preto, N., Teza, G., & Polito, V. (2014). Integration of intensity textures and local geometry descriptors from terrestrial laser scanning to map chert in outcrops. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 88–97. CrossrefGoogle Scholar

  • Reyes, R., Bellian, J., & Adams, E. W. (2009). Using statistical methods to correct lidar intensities from geological outcrops. Proceedings of the Digital Mapping ASPRS/MAPPS Annual Conference, 16-19 November 2009, San Antonio, Texas. United States of America. Google Scholar

  • Romero, B. E., & Bray. T. L. (2014). Analytical applications of fine-scale terrestrial lidar at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeology, 46(1), 25-42. CrossrefWeb of ScienceGoogle Scholar

  • Rüther, H., Chazan, M., Schroeder, R., Neeser, R., Held, C., Walker, S. J., Matmon, A., & Horwitz, L. K. (2009). Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa. Journal of Archaeological Science, 36(9), 1847-1856. Web of ScienceCrossrefGoogle Scholar

  • Schreiber, S., Hinzen, K. G., Fleischer, C., & Schütte, S. (2012). Excavation-parallel laser scanning of a medieval cesspit in the archaeological zone of Cologne, Germany. Journal on Computing and Cultural Heritage, 5(3), 12. Google Scholar

  • Song, J-H., Han, S-H., Yu, K. Y., & Kim, Y-I. (2002). Assessing the possibility of land-cover classification using lidar intensity data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/B), 259-262. Google Scholar

  • Stenton, D. R. (1991). The archaeology of terrestrial hunting systems: The Amadjuak Lake Project. Permit report on file with the Department of Culture, Elders, Language, and Youth. Government of Nunavut. Igloolik: Nunavut. Google Scholar

  • Watterson, A. (2015). Beyond digital dwelling: re-thinking interpretive visualisation in Archaeology. Open Archaeology, 1, 119-130. Google Scholar

About the article

Received: 2016-02-05

Accepted: 2016-10-29

Published Online: 2016-11-23


Citation Information: Open Archaeology, Volume 2, Issue 1, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2016-0017.

Export Citation

© 2016 David B. Landry et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
David B. Landry, Ian J. Ferguson, Brooke Milne, Mulu Serzu, and Robert W. Park
Journal of Archaeological Method and Theory, 2018
[3]
Signe Normand, Toke T. Høye, Bruce C. Forbes, Joseph J. Bowden, Althea L. Davies, Bent V. Odgaard, Felix Riede, Jens-Christian Svenning, Urs A. Treier, Rane Willerslev, and Juliane Wischnewski
Annual Review of Environment and Resources, 2017, Volume 42, Number 1, Page 541

Comments (0)

Please log in or register to comment.
Log in