Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony


Covered by:
Clarivate Analytics - Emerging Sources Citation Index
ERIH PLUS

Open Access
Online
ISSN
2300-6560
See all formats and pricing
More options …

Exploring the Utility of Bathymetry Maps Derived With Multispectral Satellite Observations in the Field of Underwater Archaeology

Radoslaw Guzinski
  • European Space Agency, ESA Centre for Earth Observation (ESRIN), Via Galileo Galilei, Casella Postale 64, 00044 Roma, Italy
  • DHI-GRAS, Agern Alle 5, DK-2970 Hørsholm, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elias Spondylis / Myrto Michalis / Sebastiano Tusa
  • Regione Siciliana, Dipartimento dei Beni Culturali e dell’Identità Siciliana, Soprintendenza del mare, Via Lungarini 9, 90133 Palermo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giacoma Brancato
  • Regione Siciliana, Dipartimento dei Beni Culturali e dell’Identità Siciliana, Soprintendenza del mare, Via Lungarini 9, 90133 Palermo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lorenzo Minno / Lars Boye Hansen
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/opar-2016-0018

Abstract

Bathymetry maps derived with satellite-based multispectral sensors have been used extensively for environmental and engineering coastal studies and monitoring. However, so far this technique has not been widely exploited in other coastal applications, such as underwater archaeology. Submerged settlements and shipwrecks are often located in water depths where the application of multispectral satellite data is feasible. This could lead to more efficient field work practices thus enabling more optimal allocations of costs and labour during archaeological excavations. This study explores the contribution of processed satellite bathymetry maps to the recording of two archaeological coastal sites: a submerged prehistoric settlement in Greece and a shipwreck of a modern cargo vessel in Italy. The results indicate that even though the accuracy of satellite derived bathymetry is high, the level of detail (spatial resolution) is not sufficient to fully replace field-based measurements. However, the use of satellite data complements the existing techniques and can help to place the archaeological sites within a broader spatial context as well as to efficiently monitor the deterioration of a site due to natural causes or human activity, which inevitably leads to risk management. When the study of larger objects is involved (for example First World War shipwrecks) the potential of using satellite data in underwater archaeological studies becomes more promising.

Keywords: Bathymetry; underwater archaeology; satellite data

References

  • Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., Fanfani, M., … Daviddi, W. (2015). The ARROWS project: adapting and developing robotics technologies for underwater archaeology. IFAC-PapersOnLine, 48(2), 194–199. http://doi.org/10.1016/j.ifacol.2015.06.032 CrossrefGoogle Scholar

  • Babits, L. E., & Van Tilburg, H. (1998). Maritime Archaeology: A Reader of Substantive and Theoretical Contributions (Vol. 1). Springer Science & Business Media. Retrieved from https://books.google.nl/books?hl=en&lr=&id=G9dcDFAn_LcC&oi=fnd&pg=PA1&ots=NW5jqQyVXY&sig=KuS5iIvcgmPhMjQXMG50F06rEaQ Google Scholar

  • Barron, J. P., & Taylor, J. du P. (1966). Marine Archaeology: Developments during Sixty Years in the Mediterranean. Retrieved from http://philpapers.org/rec/BARMAD-2 Google Scholar

  • Bass, G. F. (1966). Archaeology under water. Retrieved from http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=61873 Google Scholar

  • Büyüksalih, G., Baz, I., Alkan, M., & Jacobsen, K. (2012). DEM generation with WorldView-2 images. In ISPRS Symposium Melbourne. Retrieved from http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/isprsarchives-XXXIX-B1-203-2012.pdf Google Scholar

  • Carder, K. L., Chen, F. R., Cannizzaro, J. P., Campbell, J. W., & Mitchell, B. G. (2004). Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7), 1152–1159. Google Scholar

  • Chen, G., & Qian, S.-E. (2011). Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. Geoscience and Remote Sensing, IEEE Transactions on, 49(3), 973–980. Google Scholar

  • Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., … others. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(9), 396–425. CrossrefGoogle Scholar

  • Doneus, M., Doneus, N., Briese, C., Pregesbauer, M., Mandlburger, G., & Verhoeven, G. (2013). Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science, 40(4), 2136–2151. http://doi.org/10.1016/j.jas.2012.12.021 CrossrefGoogle Scholar

  • Fasbender, D., Radoux, J., & Bogaert, P. (2008). Bayesian data fusion for adaptable image pansharpening. Geoscience and Remote Sensing, IEEE Transactions on, 46(6), 1847–1857. Google Scholar

  • Frost, H. (1963). Under the Mediterranean: marine antiquities. London, Routledge and K. Paul 1963. Google Scholar

  • Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. CrossrefGoogle Scholar

  • Garcia, R. A., Fearns, P. R., & McKinna, L. I. (2014). Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia. Remote Sensing of Environment, 147, 186–205. Web of ScienceGoogle Scholar

  • Gkionis, P. (2013). The GE.N.ESIS Project - Georeferenced Depiction and Synthesis of Marine Archaeological Survey Data in Greece. The International Hydrographic Review, (9). Retrieved from https://journals.lib.unb.ca/index.php/ihr/article/view/22816 Google Scholar

  • Green, J. (1990). Maritime archaeology: a technical handbook. Academic Press Ltd. Retrieved from http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=107504 Google Scholar

  • Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107–2112. Google Scholar

  • Hedley, J., Roelfsema, C., & Phinn, S. R. (2009). Efficient radiative transfer model inversion for remote sensing applications. Remote Sensing of Environment, 113(11), 2527–2532. Web of ScienceGoogle Scholar

  • King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., … Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. Geoscience and Remote Sensing, IEEE Transactions on, 41(2), 442–458. Google Scholar

  • Klonowski, W. M., Fearns, P. R., & Lynch, M. J. (2007). Retrieving key benthic cover types and bathymetry from hyperspectral imagery. Journal of Applied Remote Sensing, 1(1), 011505–011505. Web of ScienceGoogle Scholar

  • Kraft, D., & others. (1988). A software package for sequential quadratic programming. DFVLR Obersfaffeuhofen, Germany. Retrieved from http://www.opengrey.eu/item/display/10068/147127 Google Scholar

  • Kutser, T., Vahtmäe, E., & Metsamaa, L. (2006). Spectral library of macroalgae and benthic substrates in Estonian coastal waters. Proc. Estonian Acad. Sci. Biol. Ecol, 55(4), 329–340. Google Scholar

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 37(27), 6329–6338. CrossrefGoogle Scholar

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Applied Optics, 38(18), 3831–3843. CrossrefGoogle Scholar

  • Linder, E., & Raban, A. (1975). Marine archaeology (Vol. 7). Cassell. Retrieved from http://www.openbibart.fr/item/display/10068/1138603 Google Scholar

  • Lyzenga, D. R. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115–125. http://doi.org/10.1080/01431168508948428 CrossrefGoogle Scholar

  • Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. Geoscience and Remote Sensing, IEEE Transactions on, 44(8), 2251–2259. Google Scholar

  • Maarleveld, T. J., Guérin, U., & Egger, B. (2013). Manual for Activities directed at Underwater Cultural Heritage: guidelines to the Annex of the UNESCO 2001 Convention. Unesco. Retrieved from https://books.google.nl/books?hl=en&lr=&id=yqy9YOi3uzQC&oi=fnd&pg=PA14&dq=Manual+for+Activities+directed+at+Underwater+Cultural+Heritage.+Guidelines+to+the+Annex+of+the+UNESCO+2001+Convention&ots=31w4Ryv5-S&sig=X6E4d5cuOXwDPb4LN2dbbA_TTbw Google Scholar

  • Michalis, M., & Spondylis, E. (2012). Ten Years of Underwater Archaeological Research at the West Coast of the South Pagasetikos Gulf. In Proceedings of the “4th Archaeological Meeting of Thessaly and Central Greece, 2009-2011. From Prehistory to the Contemporary Period.” Volos 15 - 18 March: University of Thessaly. Google Scholar

  • Momber, G., & Bowens, A. (2015). The Atlas of the 2 Seas and the First World War Forgotten Wrecks Projects: Innovative Methods of Underwater Cultural Heritage Research, Presentation and Dissemination. In Underwater cultural heritage from World War I: proceedings of the Scientific Conference on the Occasion of the Centenary of World War I, Bruges, Belgium, 26 & 27 June 2014 (p. 183). UNESCO Publishing. Retrieved from https://www.google.com/books?hl=en&lr=&id=5WzuCgAAQBAJ&oi=fnd&pg=PA183&dq=first+world+war+shipwrecks+unesco&ots=oKyocMc9P-&sig=iEkJFPok_oepbVwXeNFuI3rkJrE Google Scholar

  • Muckelroy, K. (1978). Maritime archaeology. Cambridge University Press. Retrieved from https://books.google.nl/books?hl=en&lr=&id=rvRKwa78s48C&oi=fnd&pg=PA3&dq=Maritime+Archaeology&ots=bKjdappI0t&sig=xxGpecEFDNou6osi0VWAqXdx7U4 Google Scholar

  • Muslim, A. M., & Foody, G. M. (2008). DEM and bathymetry estimation for mapping a tide-coordinated shoreline from fine spatial resolution satellite sensor imagery. International Journal of Remote Sensing, 29(15), 4515–4536. Google Scholar

  • Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33), 8710–8723. CrossrefGoogle Scholar

  • Puetz, A. M., Lee, K., & Olsen, R. C. (2009). WorldView-2 data simulation and analysis results (Vol. 7334, p. 73340U–73340U–9). http://doi.org/10.1117/12.818187 Google Scholar

  • Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied Optics, 20(2), 177–184. CrossrefGoogle Scholar

  • Spondylis, E. (1996a). Contribution to a Study of the Configuration at the Coast of Pylia, based on the Location of New Archaeological Sites. In Archaeoseismology (pp. 119–128). Oxford: British School of Athens. Google Scholar

  • Spondylis, E. (1996b). Symvoli sti Meleti Diamorfosis ton Akton tis Pylias me vasi ton Entopismo Neon Archaiologikon Theseon. Enalia, IV(3/4), 30–37. Google Scholar

  • Spondylis, E. (1999). Methoni. Archaiologiko Deltion, 54(Annual B’ 2), 1025–1028. Google Scholar

  • Spondylis, E. (2012). IENAE’s Underwater Archaeological Research in the Pagasetikos Gulf (2009-2011). In Proceedings of the “4th Archaeological Meeting of Thessaly and Central Greece, 2009-2011. From Prehistory to the Contemporary Period.” Volos 15 - 18 March: University of Thessaly. Google Scholar

  • Spondylis, E. (2015). Pavlopetri. In Proceedings of the International Conference “Voutia sta Perasmena. Ypovryhia Archaiologiki Erevna 1975-2014.” Athens: Greek Ephorate of Underwater Antiquities. Google Scholar

  • Throckmorton, P. (1977). Diving/or Treasure. Viking Press, New York. Google Scholar

  • UNESCO. (2015). Underwater cultural heritage from World War I: proceedings of the Scientific Conference on the Occasion of the Centenary of World War I, Bruges, Belgium, 26 & 27 June 2014. UNESCO Publishing. Google Scholar

  • Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3. Retrieved from ftp://loa.univ-lille1.fr/6S/6S_Manual_Part_1.pdf.gz Google Scholar

  • Wales, D. J., & Scheraga, H. A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285(5432), 1368–1372. Google Scholar

  • Wilkes, B. S. J. (1971). Nautical Archaeology: A Handbook. Newton Abbot, David & Charles. Google Scholar

  • Google Scholar

About the article

Received: 2016-03-09

Accepted: 2016-09-16

Published Online: 2016-11-23


Citation Information: Open Archaeology, Volume 2, Issue 1, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2016-0018.

Export Citation

© 2016 Radoslaw Guzinski et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in