Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony


Covered by:
Clarivate Analytics - Emerging Sources Citation Index
ERIH PLUS

CiteScore 2018: 1.30

SCImago Journal Rank (SJR) 2018: 0.339
Source Normalized Impact per Paper (SNIP) 2018: 0.726

Open Access
Online
ISSN
2300-6560
See all formats and pricing
More options …

Archaeological Site Vulnerability Modelling: The Influence of High Impact Storm Events on Models of Shoreline Erosion in the Western Canadian Arctic

Michael J. E. O’Rourke
Published Online: 2017-03-03 | DOI: https://doi.org/10.1515/opar-2017-0001

Abstract

Much of the Inuvialuit archaeological record is situated along shorelines of the western Canadian Arctic. These coastal sites are at substantial risk of damage due to a number of geomorphological processes at work in the region. The identification of threatened heritage remains is critical in the Mackenzie Delta, where landscape changes are taking place at an increasingly rapid pace. This paper outlines some preliminary observations from a research program directed toward identifying vulnerable archaeological remains within the Inuvialuit Settlement Region. Coastal erosion rates have been calculated for over 280 km of the Kugmallit Bay shoreline, extending along the eastern extent of Richards Island and neighbouring areas of the Tuktoyaktuk Peninsula. Helicopter surveys conducted during the 2014 field season confirmed that areas exposed to heavy erosive forces in the past continue to erode at alarming rates. Some of the calculated rates, however, have proven far too conservative. An extreme period of erosion at Toker Point in the autumn of 2013 has yielded a prime example of how increasingly volatile weather patterns can influence shoreline erosion models. It has also provided a case with which to demonstrate the value of using more recent, shorter time-interval imagery in assessing impacts to cultural landscapes.

Keywords: Archaeological site management; vulnerability mapping; coastal erosion; geographic information systems; (GIS)

References

  • AMAP/CAFF/SDWG. (2013). Identification of Arctic marine areas of heightened ecological and cultural significance: Arctic Marine Shipping Assessment (AMSA) IIc. Oslo, Arctic Monitoring and Assessment Programme (AMAP).Google Scholar

  • Alunik, I., Kolausok, E.D., and Morrison, D. (2003). Across Time and Tundra: The Inuvialuit of the Western Arctic. Vancouver: Raincoast Books.Google Scholar

  • Anisimov, O.A., Vaughan, D.G., Callaghan, T.V., Furgal, C., Marchant, H., Prowse, T.D., Vilhjálmsson, H., and Walsh, J.E. (2007). Polar Regions (Arctic and Antarctic). In M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp.653-685). Cambridge, UK: Cambridge University Press.Google Scholar

  • Bewley, R., and Raczkowski, W., (Eds.) (2002). Aerial Archaeology: Developing Future Practice. Oxford: IOS Press.Google Scholar

  • Blankholm, H.P. (2009). Long Term Research and Cultural Resource Management Strategies in Light of Climate Change and Human Impact. Arctic Anthropology, 46(1-2),17-24.Web of ScienceCrossrefGoogle Scholar

  • Cinq-Mars, J., and Pilon, J.-L. (1991). The NOGAP Archaeology Project: A Brief Introduction. In J. Cinq-Mars & J.-L. Pilon (Eds.), NOGAP Archaeology Project: An Integrated Archaeological Research and Management Approach. Canadian Archaeological Association Occasional paper No.1. http://canadianarchaeology.com/caa/publications/occasional-paper/1 (accessed July 18, 2013).Google Scholar

  • Crawford, O.G.S. (1929). Air-photography for archaeologists. Great Britain: Ordnance Survey.Google Scholar

  • DigitalGlobe Inc. (2009). Geoeye-1 satellite imagery, Geo PAN/MSI. Image IDs: 2009060421234041603031602129, 2009091520374521603031609692.Google Scholar

  • DigitalGlobe Inc. (2013). Geoeye-1 satellite imagery, Geo PAN/MSI. Image IDs: 2013061421103041603031601134, 2013080720385721603031607313.Google Scholar

  • Environmental Systems Research Institute Incorporated. ©1999-2014. ArcMap. Redlands, California.Google Scholar

  • Environmental Systems Research Institute Incorporated. (2014). ArcGIS Help Library - Section: How Spline Works. Redlands, California.Google Scholar

  • Friesen, M. (2016). Pan-Arctic Population Movements: The Early Paleo-Inuit and Thule Inuit Migrations. In M. Friesen and O. Mason (Eds.), The Oxford Handbook of the Prehistoric Arctic. New York, NY: Oxford University Press.CrossrefGoogle Scholar

  • Harper, J.R., Reimer, P.D., Collins, A.D. (1985). Beaufort Sea physical shore-zone analysis. Geological Survey of Canada, Open File 1689.Google Scholar

  • Hart, E.J. (2011). Nuna Aliannaittuq - Beautiful Land. Inuvialuit Cultural Resource Centre.Google Scholar

  • Johnson, K, Solomon, S., Berry, D., Graham, P. (2003). Erosion progression and adaptation strategy in a northern coastal community. In M. Phillips, S.M. Springman and L.U Arenson (Eds.), Permafrost (pp. 489-494). Lisse: Swets & Zeitlinger.Google Scholar

  • Lantuit, H., Overduin, P.P., Couture, N., Wetterich, S., Aré, F., Atkinson, D....Vasiliev, A. (2012). The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries and Coasts, 35(2), 383-400. Doi:10.1007/s12237-010-9362-6.CrossrefGoogle Scholar

  • Lantz, T.C. and Kokelj, S.V. (2008). Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophysical Research Letters, 35(L06502), 1-5.CrossrefGoogle Scholar

  • Mackenzie Valley Air Photo Project. © 2005. Government of Canada with permission from Indian and Northern Affairs Canada.Google Scholar

  • Manson, G.K. & Solomon, S.M. (2007). Past and Future Forcing of Beaufort Sea Coastal Change. Atmosphere-Ocean, 45(2), 107-122.Google Scholar

  • Mason, O.K., Jordan, J.W., Lestak, L., and Manley, W.F. (2012). Chapter 5 - Narratives of Shoreline Erosion and Protection at Shishmaref, Alaska: The Anecdotal and the Analytical. In J.A.G. Cooper and O.H. Pilkey (Eds.), Pitfalls of Shoreline Stabilization: Selected Case Studies (pp. 73-92). Netherlands, Springer.Google Scholar

  • National Air Photo Library. (1950). 1:40,000 scale B&W air photos [Rolls: A12699, A12760, A12847, A12848, A12854, A12857, A12864, A12902, A12918]. Ottawa, Department of Energy, Mines and Resources.Google Scholar

  • National Air Photo Library. (1972). 1:60,000 scale B&W air photos. [Rolls: A22884, A22974]. Ottawa, Department of Energy, Mines and Resources.Google Scholar

  • Peletier, B.R., and Medioli, B.E. (Eds.) (2014). Environmental Atlas of the Beaufort Coastlands. Geological Survey of Canada, Open File 7619.Google Scholar

  • Pisaric, Michael F. J., Thienpont, J.R., Kokelj, S.V., Nesbitt, H., Lantz, T.C., Solomon, S., and Smol, J.P. (2011). Impacts of a recent storm surge on an Arctic delta ecosystem examined in the context of the last millennium. Proceedings of the National Academy of Sciences, 108(22), 8960-8965.Google Scholar

  • Radosavljevic, B., Lantuit, H., Pollard, W., Overduin, P., Couture, N., Sachs, T., Helm, V., Fritz, M. (2015). Erosion and Flooding- Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada. Estuaries and Coasts, http://link.springer.com/article/10.1007%2Fs12237-015-0046-0 (accessed 17 November 2015).Google Scholar

  • Reeder, L.A., Torben C.R. and Erlandson, J.M. (2012). Our disappearing past: a GIS analysis of the vulnerability of coastal archaeological resources in California’s Santa Barbara Channel region. Journal of Coastal Conservation, 16, 187-197.Google Scholar

  • Robinson, M.H., Alexander, C.R., Jackson, Ch.W., McCabe, Ch.P., and Crass, D. (2010). Threatened Archaeological, Historic, and Cultural Resources of the Georgia Coast: Identification, Prioritization and Management Using GIS Technology. Geoarchaeology, 25(3), 312-326.Web of ScienceCrossrefGoogle Scholar

  • Schwarz, S., Epp, H., and Jasper, J. (2007). Mackenzie mapping program for northern oil and gas development. In: Conference proceedings: First International Circumpolar Conference on Geospatial Sciences and Applications, IPY GeoNorth 2007. Ottawa, Natural Resources Canada.Google Scholar

  • Shaw, J, Taylor, R.B., Solomon, S., Christian, H.A., and Forbes, D.L. (1998). Potential Impacts of Sea-Level Rise on Canadian Coasts. The Canadian Geographer, 42(4), 635-379.Google Scholar

  • Solomon, S.M. (2005). Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, Northwest Territories, Canada. Geo-Marine Letters, 25, 127-137.CrossrefGoogle Scholar

  • Solomon, S. (2014). Erosion in the Vicinity of Tuktoyaktuk Harbour: a Case Study. In Peletier, B.R., and Medioli, B.E. (Eds.), Environmental Atlas of the Beaufort Coastlands. (pp.173-181). Geological Survey of Canada, Open File 7619.Google Scholar

  • Small, D., Atallah, E. and Gyakum, J. (2011). Wind Regimes along the Beaufort Sea Coast Favorable for Strong Wind Events at Tuktoyaktuk. Journal of Applied Meteorology and Climatology, 50, 1291-1306.Google Scholar

  • Smith, S.L., Wolfe, S.A., Riseborough, D.W., and Nixon, F.M. (2009). Active-Layer Characteristics and Summer Climatic Indices, Mackenzie Valley, Northwest Territories, Canada. Permafrost and Periglacial Processes, 20, 201-220.CrossrefGoogle Scholar

  • Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, A. (2009). Digital Shoreline Analysis System (DSAS) version 4.3 - An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008-1278.Google Scholar

  • Thomas, R. I., Wing Commander. (1950). Photographic Operations of the Royal Canadian Air Force. Arctic, 3(3), 150-165.Google Scholar

  • United Stated Geological Survey. (2009). Digital Shoreline Analysis System, version 4.3.4730. Woods Hole, Massachusetts.Google Scholar

About the article

Received: 2015-11-30

Accepted: 2017-02-17

Published Online: 2017-03-03

Published in Print: 2017-01-26


Citation Information: Open Archaeology, Volume 3, Issue 1, Pages 1–16, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Todd J. Braje, Jon M. Erlandson, Torben C. Rick, Loren Davis, Tom Dillehay, Daryl W. Fedje, Duane Froese, Amy Gusick, Quentin Mackie, Duncan McLaren, Bonnie Pitblado, Jennifer Raff, Leslie Reeder-Myers, and Michael R. Waters
American Antiquity, 2019, Page 1
[2]
G. Mattei, A. Rizzo, G. Anfuso, P.P.C. Aucelli, and F.J. Gracia
Ocean & Coastal Management, 2019, Volume 179, Page 104876
[4]
Ravi Darwin Sankar, Maribeth S Murray, and Patricia Wells
Polar Geography, 2019, Page 1
[5]
Ionut Nicu, Bulat Usmanov, Iskander Gainullin, and Madina Galimova
Water, 2019, Volume 11, Number 3, Page 591
[7]
Anna M. Irrgang, Hugues Lantuit, Richard R. Gordon, Ashley Piskor, and Gavin K. Manson
Arctic Science, 2019, Volume 5, Number 2, Page 107
[8]
[9]
Rasmus Fenger-Nielsen, Jørgen Hollesen, Henning Matthiesen, Emil Alexander Sherman Andersen, Andreas Westergaard-Nielsen, Hans Harmsen, Anders Michelsen, and Bo Elberling
Science of The Total Environment, 2019, Volume 654, Page 895
[10]
Jørgen Hollesen, Martin Callanan, Tom Dawson, Rasmus Fenger-Nielsen, T. Max Friesen, Anne M. Jensen, Adam Markham, Vibeke V. Martens, Vladimir V. Pitulko, and Marcy Rockman
Antiquity, 2018, Volume 92, Number 363, Page 573
[11]
Anna M. Irrgang, Hugues Lantuit, Gavin K. Manson, Frank Günther, Guido Grosse, and Pier Paul Overduin
Journal of Geophysical Research: Earth Surface, 2018

Comments (0)

Please log in or register to comment.
Log in