Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony

Covered by:
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Portable XRF on Prehistoric Bronze Artefacts: Limitations and Use for the Detection of Bronze Age Metal Workshops

Heide Wrobel Nørgaard
Published Online: 2017-07-18 | DOI: https://doi.org/10.1515/opar-2017-0006


Two different scientific analyses-one destructive and one non-destructive-were conducted on two separate groups of bronze ornaments dating from 1500-1100 BC to investigate, amongst other traits, the metal composition of their copper-tin alloys. One group of artefacts was sampled, and polished thin sections were analysed using a scanning electron microscope (SEM). Results from the corrosion crust of copper-tin alloys, and the change measured within the elemental composition from the bulk metal to the surface, greatly influenced the interpretation of the second data set, which was measured using a handheld X-ray fluorescence (XRF) device. The surface of corroded bronze ornaments consists mostly of copper carbonates, oxides, and chlorides. Chemical processes, such as decuprification, change the element composition in such a manner that the original alloy cannot be traced with a non-destructive method. This paper compares the results of both investigations in order to define the possibilities and limits of non-destructive XRF analyses of corroded bronze artefacts.

This article offers supplementary material which is provided at the end of the article.

Keywords: portable XRF-analysis; corroded bronze ornaments; determination of workshops; Nordic Bronze Age


  • Anker, D. (1982). Die Rontgenfluoreszenzanalyse in der Archaologie. In K. d. R.-G. Zentralmuseums (Ed.), Festschrift Hans-Jurgen Hundt. Teil 3: Fruhes Mittelalter (pp. 212-228). Mainz: Romisch-Germanischen Zentralmuseum Mainz.Google Scholar

  • Bernard, M. C., & Joiret, S. (2009). Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochimica Acta, 54, 5199-5205.Web of ScienceCrossrefGoogle Scholar

  • Chase, W. (1994). Chinese bronzes: casting, finishing, patination and corrosion. In D. Scott, J. Podnay & B. Considine (Eds.), Ancient and Historic Metals (pp. 85-118). Cincinnati, Ohio: The Getty Conservation Institution.Google Scholar

  • Constantinides, I., Adrianes, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloyGoogle Scholar

  • reference materials. Applied Surface Science, 189, 90-101.Google Scholar

  • Copper Development Association, I. (2008). Working with Copper. How to Apply Statuary and Patina Finsihes. https://www.copper.org/publications/pub_list/: Copper Alliance.Google Scholar

  • Fernandes, R., van Os, B. J., & Huisman, H. D. (2013). The use of Hand-Held XRF for investigating the composition and corrosion of Roman copper-alloyed artefacts. Heritage Science, 1:30, 1-7.Google Scholar

  • Groves, J. (2001, July of 2002 ). 16th Century Amber Varnish & Venetian Amber Varnish - Amber Varnishes available during the 1500-1600’s Retrieved 22-09, 2016.Google Scholar

  • Harding, A. F. (2000). European Societies in the Bronze Age. Cambridge: Cambridge University Press.Google Scholar

  • Helfert, M., & Bohme, D. (2010). Herkunftsbestimmung von Romischer Keramik mittels portabler energiedispersiver Rontgenfluoreszenzanalyse (P-ED-RFA) - erste Ergebnisse einer anwendungsbezogenen Teststudie. In B. Ramminger & O. Stilborg (Eds.), Naturwissenschaftliche Analysen vor- und fruhgeschichtlicher Keramik I. Methoden, Anwndungsbereiche, Auswertungsmoglichkeiten (Vol. 176, pp. 11-30). Bonn: Dr. Rodolf Habelt GmbH.Google Scholar

  • Härke, H. (1978). Probleme der optischen Emissionsspektralanalyse: Technische Moglichkeiten und methodische Fragestellungen. Prahistorische Zeitschrift, 53, 165-276.Google Scholar

  • Junghans, S., Sangmeister, E., & Schroder, M. (1974). Kupfer und Bronze in der fruhen Metallzeit Europas. Berlin: Mann.Google Scholar

  • Laux, F. (1971). Die Bronzezeit in der Luneburger Heide. Hildesheim: August Lax Verlag.Google Scholar

  • Lutz, J., & Pernicka, E. (1996). Energy Dispersive X-Ray Fluorescence analysis of ancient Copper Alloys: Empirical Values for Precision and Accuracy. Archaeometry, 38, 2, 313-323.CrossrefGoogle Scholar

  • Mircea, O., Sandu, I., Vasilache, V., & Sandu, I. G. (2012). A study on the Deterioration and Degradation of Metallic Archaeological Artifacts. International Journal of Conservation Science, 3(3), 179-188.Google Scholar

  • Nørgaard, H. W. (2011). Die Halskragen der Bronzezeit im nordlichen Mitteleuropa und Sudskandinavien (Vol. 200). Bonn: Dr. Rudolf Habelt.Google Scholar

  • Nørgaard, H. W. (2014a). Craftsmanship and Metalwork in the Nordic Bronze Age: craft organisation, craftspeople and their areas of contact. (PhD), Aarhus University, unpublished PhD-thesis.Google Scholar

  • Nørgaard, H. W. (2014b). Valued Craftsmen: As important as prestige goods? -Some ideas about itinerant craftsmanship in the Nordic Bronze Age. In S. Reiter, H. W. Norgaard, Z. Kolzce & C. Rassmann (Eds.), Rooted in Movement. Aspects of Mobility in Bronze Age Europe (pp. 37-52). Aarhus: Jutland Archaeological Society.Google Scholar

  • Nørgaard, H. W. (2015a). Genau hingesehen - Metallhandwerk in Mecklenburg zwischen 1550-1100 BC. Herstellungsspuren und Metallkompositionen als Indikator fur Metallwerkstatten in Mecklenburg. Bodendenkmalpflege in Mecklenburg-Vorpommern, Jahrbuch 61, 2013 (pp. 57-100). Schwerin: Abteilung Landesarchaologie im Landesamt fur Kultur und Denkmalpflege Mecklenburg-Vorpommern.Google Scholar

  • Nørgaard, H. W. (2015b). Metalcraft within the Nordic Bronze Age: Combined metallographic and superficial imaging reveals the technical repertoire in crafting bronze ornaments. Journal for Archaeological Science, 64, 110-128.Google Scholar

  • Nørgaard, H. W. (2015c). Tracing the Hand that Crafted: how individual working traces make Bronze Age ornaments talk. In P. Suchowska-Ducke, S. S. Reiter & H. Vandkilde (Eds.), Forging Identities. The Mobility of Culture in Bronze Age Europe. Report from a Marie Curie project 2009-2012 with concluding conference at Aarhus University, Moesgaard 2012. (pp. 101-110). Oxford: BAR International Series.Google Scholar

  • Otto, H. (1973). Uber die Auswertung der Metallanalysen in Band 1 und 2 der “Studien zu den Anfangen der Metallurgie” (SAM). Acta Praehistoria et Archaeologica, 4, 1-9.Google Scholar

  • Oudbashi, O., Emami, S. M., Ahmadi, H., & Davami, P. (2013). Micro-stratigraphical investigation on corrosion layers in ancient Bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Heritage Science, 1:21, 1-10.Google Scholar

  • Pernicka, E. (1995). Gewinnung und Verbreitung der Metalle in prahistorischer Zeit. Jahrbuch des Romisch-Germanischen Zentralmuseums Mainz, 37. Jahrgang(Teil 1), 21-129.Google Scholar

  • Pernicka, E. (2010). Archaometallurgische Untersuchungen am und zum Hortfund von Nebra. In H. Meller & F. Bertemes (Eds.), Der Griff nach den Sternen. Intern. Symposium Halle (Saale) 16.-21. Februar 2005 (pp. 719-734). Halle: Landesmuseums fur Vorgeschichte.Google Scholar

  • Pernicka, E. (2014). Provenance Determination of Archaeological Metal Objects. In B. W. Roberts & C. P. Thornton (Eds.), Archaeometallurgy in Global Perspective. Methods and Syntheses (pp. 239-268). London: Springer.Google Scholar

  • Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and Mechanisms of formation of Natural Patinas on Archaeological Cu-Sn Alloys. Corrosion Science, 40(12), 2083-2111.CrossrefGoogle Scholar

  • Sangmeister, E. (1971). Aufkommen der Arsenbronze in SO-Europa. In G. Novak (Ed.), Actes du VIIe Congres International des Sciences Prehistoriques et Protohistoriques, Beograd, 9-15 Septembre 1971 (pp. 109-129). Beograd.Google Scholar

  • Šatović, D., Desnica, V., & Fazinić, S. (2013). Use of portable X-ray flourescence instrument for bulk alloy analysis on low corroded indoor bronzes. Spectrochimica Acta Part B, 89, 7-13.Google Scholar

  • Stos-Gale, Z. A., & Gale, N. H. (2009). Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeological and Anthropological Sciences, 1(3), 195-213.Google Scholar

  • Wadsak, M., Constantinides, I., Vittiglio, G., Adriaens, A., Janssens, K., Schreiner, M., Wuttmann, M. (2000). Multianalytical Study of Patina Formed on Archaeological Metal Objects from Bliesbruck-Reinheim. Mikrochimica Acta, 133, 159-164.Google Scholar

  • Weisser, T. S. (1975). The de-alloying of copper alloys. In N. S. Brommelle, P. Smith, D. Leigh, A. Moncrieff, W. A. Oddy & P. Pratt (Eds.), Conservation in Archaeology and the Applied Arts. (pp. 207-214). London: The international Institute for Conservation of Historic and Artistic Works.Google Scholar

  • Wolff, T. (2009). Referenzprobenfreie quantitative Mikri-Rontgenfluoreszenzanalyse. Berlin.Google Scholar

  • Wolters, J. (1991). Der Gold- und Silberschmied. Werkstoffe und Materialien. Stuttgart.Google Scholar

About the article

Received: 2016-09-29

Accepted: 2017-05-23

Published Online: 2017-07-18

Published in Print: 2017-01-26

Citation Information: Open Archaeology, Volume 3, Issue 1, Pages 101–122, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Aurélia Masson-Berghoff, Ernst Pernicka, Duncan Hook, and Andrew Meek
Journal of Archaeological Science: Reports, 2018, Volume 21, Page 318
Erez Ben-Yosef
Journal of Archaeological Science, 2018, Volume 96, Page 208

Comments (0)

Please log in or register to comment.
Log in