Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony

Covered by:
Clarivate Analytics - Emerging Sources Citation Index

CiteScore 2018: 1.30

SCImago Journal Rank (SJR) 2018: 0.339
Source Normalized Impact per Paper (SNIP) 2018: 0.726

Open Access
See all formats and pricing
More options …

Portable XRF: A Tool for the Study of Corundum Gems

Germana Barone
  • Corresponding author
  • University of Catania, Department of Biological, Geological and Environmental Sciences, C.so Italia, 57, 95129 Catania, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paolo Mazzoleni
  • University of Catania, Department of Biological, Geological and Environmental Sciences, C.so Italia, 57, 95129 Catania, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Danilo Bersani
  • University of Parma, Department of Physics and Earth Science, Parco Area delle Scienze, 7/a, 43124, Parma, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simona Raneri
Published Online: 2017-09-08 | DOI: https://doi.org/10.1515/opar-2017-0011


Origin of gemstones is a key aspect not only in gemological field but also in Cultural Heritage studies, for the correct evaluation of precious artifacts. The studies on gems require the application of non-invasive and non-destructive methods; among them, portable spectroscopic techniques has been demonstrated as powerful tools, providing a fingerprint of gems for origin and provenance determination. In this study, portable XRF spectroscopy has been applied to test the potential of the technique for the origin determination of corundum gems. The obtained results allowed distinguishing natural and synthetic rubies and sapphires.

Keywords : Gems; p-XRF; corundum; natural; synthetic


  • Abduriyim, A., & Kitawaki, H. (2006). Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology. Gems & Gemology, 42, 98-118.CrossrefGoogle Scholar

  • Adriaens, A. (2005). Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1503-1516.CrossrefGoogle Scholar

  • Barone, G., Bersani, D., Crupi, V., et al. (2014). A portable versus micro-Raman equipment comparison for gemmological purposes: the case of sapphires and their imitations. J. Raman Spectrosc., 45, 1309-1317. doi:CrossrefWeb of ScienceGoogle Scholar

  • Barone, G., Bersani, D., Jehlička, J., et al. (2015a). Fast on-site identification of minerals by using portable Raman equipment in gemological trade contexts and in collectors exhibitions. Periodico di Mineralogia, 208, 27-28.Google Scholar

  • Barone, G., Bersani, D., Jehlička, et al. (2015b). Nondestructive investigation on the 17-18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J. Raman Spectrosc., 46, 989-995. doi:CrossrefWeb of ScienceGoogle Scholar

  • Barone, G., Mazzoleni, P., Raneri, S., et al. (2016a). Raman investigation on precious jewelry collections preserved in Paolo Orsi Regional Museum (Siracusa, Sicily) by using portable equipment. Applied Spectroscopy, 70, 1420-1431.CrossrefGoogle Scholar

  • Barone, G., Bersani, D., Lottici, P.P., et al. (2016b). Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J. Raman Spectrosc., 47, 1534-1539. doi:CrossrefWeb of ScienceGoogle Scholar

  • Bersani, D., Azzi, G., Lambruschi, E., et al., (2014). Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc., 45, 1293-1300. doi:CrossrefWeb of ScienceGoogle Scholar

  • Bersani, D., & Lottici, P.P. (2010) Applications of Raman spectroscopy to gemology, Analytical and bioanalytical chemistry, 397, 2631-2646.Google Scholar

  • Gliozzo, E., Grassi, N., Bonanni, P., et al. (2011). Gemstones from Vigna Barberini at the palatine hill (Rome, Italy). Archaeometry, 53, 469-489.Web of ScienceGoogle Scholar

  • Guillong, M., & Günther, D. (2001). Quasi ‘non-destructive’ laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires. Spectrochimica Acta B - Atomic Spectroscopy, 56, 1219-1231.CrossrefGoogle Scholar

  • Hughes, R.W. (1997). Ruby & Sapphire, RWH Publishing, Boulder, CO. Jehlička, J., Culka, A., Baštová, M., et al. (2016). The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones. Philosophical Transactions of the Royal Society of London A.: Mathematical, Physical and Engineering Sciences, 374, 1-19.Google Scholar

  • Jeršek, M. & Kramar, S. (2014). Raman microspectroscopy of gemstones from a chalice made in 1732. J. Raman Spectrosc., 45, 1000-1005. doi:CrossrefWeb of ScienceGoogle Scholar

  • Joseph, D., Lal, M., Shinde P. S., et al. (2000). Characterization of gem stones (rubies and sapphires) by energy-dispersive x-ray fluorescence spectrometry. X-Ray Spectrom, 29, 147-150.CrossrefGoogle Scholar

  • Karampelas, S., Wörle, M., Hunger, K., et al. (2012). Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: Identification of gemstones. J. Raman Spectrosc., 43, 1833-1838. doi:CrossrefGoogle Scholar

  • Kiefert, L., Chalain, J.P., & Häberli, S. (2005). Case study: Diamonds, gemstones and pearls: From the past to the present. In: Edwards and Chalmers (Eds.), Royal Society of Chemistry (Great Britain), pp. 379-402.Google Scholar

  • Lauwers, D., Candeias, A., Coccato, A., et al. (2016). Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 157, 146-152.Web of ScienceGoogle Scholar

  • Lo Giudice, A., Re, A., Calusi, S., Giuntini, L., et al. (2009). Multitechnique characterization of lapis lazuli for provenance study. Analytical and Bioanalytical Chemistry, 395, 2211-2217.Google Scholar

  • Lu, P.J., Yao, N., So, J.F., et al. (2005). The earliest use of corundum and diamond, in prehistoric China. Archaeometry, 47, 1-12.CrossrefGoogle Scholar

  • Muhlmeister, S., & Devouard, B. (1991). Trace element chemistry of natural and synthetic rubies. In A.S. Keller (Ed.), Proceedings of the International Gemological Symposium 1991, 139-140. Santa Monica, CA: Gemological Institute of America.Google Scholar

  • Muhlmeister, S., Fritsch, E., Shigley, J.E., et al. (1998). Separating natural and synthetic rubies on the basis of trace-element chemistry, Gems & Gemology, 34, 80-101.Google Scholar

  • O’Donoghue, M. (2006). Gems: their sources, descriptions and identification, Elsevier, Great Britain.Google Scholar

  • Osterrothová, K., Minaříková, L., Culka, et al. (2014). In situ study of stones adorning a silver Torah shield using portable Raman spectrometers, J. Raman Spectrosc., 45, 830-837. doi:CrossrefWeb of ScienceGoogle Scholar

  • Petrová, Z., Jehlička, J., Čapoun, T., et al. (2012). Gemstones and noble metals adorning the sceptre of the Faculty of Science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J. Raman Spectrosc., 43, 1275-1280. doi:CrossrefWeb of ScienceGoogle Scholar

  • Rankin, A.H., Greenwood, J., & Hargreaves, D. (2003). Chemical fingerprinting of some East African gem rubies by Laser Ablation ICP-MS. The Journal of Gemmology, 28, 473-482.Google Scholar

  • Reiche, I., & Lambacher, L. (2004). In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich’s Cross from the treasury of Basel Cathedral. J. Raman Spectrosc., 35, 719-725. doi:CrossrefGoogle Scholar

  • Rossman, G.R. (2009). The Geochemistry of Gems and Its Relevance to Gemology: Different Traces, Different Prices. Elements, 5, 159-162.Web of ScienceCrossrefGoogle Scholar

  • Vandenabeele, P., Edwards, H.G.M., & Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev., 43, 2628-2649.CrossrefGoogle Scholar

About the article

Received: 2016-12-02

Accepted: 2017-07-09

Published Online: 2017-09-08

Published in Print: 2017-09-26

Citation Information: Open Archaeology, Volume 3, Issue 1, Pages 194–201, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2017-0011.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in