Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Open Access

Open Archaeology

Editor-in-Chief: Harding, Anthony


Covered by:
Clarivate Analytics - Emerging Sources Citation Index
ERIH PLUS

CiteScore 2018: 1.30

SCImago Journal Rank (SJR) 2018: 0.339
Source Normalized Impact per Paper (SNIP) 2018: 0.726

Open Access
Online
ISSN
2300-6560
See all formats and pricing
More options …

Investigation by pXRF of Caltagirone Pottery Samples Produced in Laboratory

Anna M. Gueli / Antonio Delfino / Emanuele Nicastro / Stefania Pasquale
  • Corresponding author
  • Department of Physics and Astronomy, Catania University & INFN, S. Sofia 64, I-95123 Catania, Itay
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giuseppe Politi / Antonella Privitera / Sofia Spampinato / Giuseppe Stella
Published Online: 2017-09-23 | DOI: https://doi.org/10.1515/opar-2017-0014

Abstract

In the study of archaeological ceramics, it is important to have compositional data to identify their origin and source. The fabric also provides useful information on the production technology, especially with regard to the firing steps. The work presented here is connected to this field and focuses on the main parameters related to the terracotta artefacts preparation. Thus, one can consider the effects in terracotta characteristics of different raw materials and firing parameters, in particular for pottery of Caltagirone, which is one of most important centres of pottery production in Italy, active since the Neolithic. To this end, terracotta samples have been reproduced in a laboratory setting according to the ancient procedure of Caltagirone manufacture, starting from clay and degreaser extraction in local historical sites. The analysis was conducted using a portable X-Ray Fluorescence (pXRF) spectrometer for elemental characterization of sand degreaser and of clays during each step of the realization process and in different firing conditions. SEM-ED techniques were also employed to verify the method and results for some of the samples after firing process. Framing the technological context of manufacture production, known in the specific case, it is also possible to identify potential outcomes and limits in the study of potsherds using pXRF technology, in applying the methodology to historic artefacts.

Keywords: archaeology; pottery; pXRF; SEM-EDS; Caltagirone (Sicily)

References

  • Alaimo, R., Bultrini, G., Fragala, I., Giarrusso, R., Iliopoulos, I., Montana, G. (2004a). Archaeometry of sicilian glazed pottery, Appl. Phys. A 79, 221-227.CrossrefGoogle Scholar

  • Alaimo, R., Bultrini, G., Fragala, I., Giarrusso, R., Montana, G. (2004b). Microchemical and microstructural characterization of medieval and post-medieval ceramic glaze coatings, Appl. Phys. A 79, 263-272.CrossrefGoogle Scholar

  • Alaimo, R., Giarrusso, R., Iliopoulos, I., Montana, G. (2002). Archaic and classical ceramic artefacts from Caltagirone (Sicily): a first attempt for distinguishing imports and local imitations through petrography and chemistry, Periodico di Mineralogia 71, Special Issue: Archaeometry and Cultural Heritage, 17-31.Google Scholar

  • Alaimo, R., Giarrusso, R., Montana, G. (1999). Melanges de l’ecole Francaise de Rome 111, 45. Google Scholar

  • Alaimo, R., Greco, C., Montana, G. (1998). Produzione e circolazione della ceramica Fenicia e Punica nel Mediterraneo: il contributo delle analisi archeometriche, ed. by E. Acquaro, B. Fabbri, University Press Bologna.Google Scholar

  • Alaimo, R., Anzalone, S., Calderone, S., Perla, P., Vianelli, G. (1974). Le argille siciliane. Inventario e possibilita di utilizzazione. Palermo: Assessorato Sviluppo Economico Regione SicilianaGoogle Scholar

  • Aquilia, E., Barone, G., Mazzoleni, P., Ingoglia, C. (2012). Petrographic and chemical characterization of fine ware from three Archaic and Hellenistic kilns in Gela, Sicily, Journal of Cultural Heritage 13, 442-447.CrossrefGoogle Scholar

  • Attas, M., Yaffe L., Fossey, J.M. (1977). Neutron activation analysis of early Bronze Age pottery from Lake Vouliagmeni, Perakhora, central Greece. Archaeometry 19, 33-43.Google Scholar

  • Barilaro, D., Crupi, V., Interdonato, S., Majolino, D., Venuti, V., Barone, G., La Russa, M.F., Bardelli, F. (2008). Characterization of blue decorated Renaissance pottery fragments from Caltagirone (Sicily, Italy). Applied Physics A. Materials Science & Processing, 92, 91-96.CrossrefGoogle Scholar

  • Barilaro, D., Crupi, V., Majolino, D., Venuti, V., Barone, G., D’Acapito, F., Bardelli, F., Giannici, F. (2007). Decorated pottery study: Analysis of pigments by x-ray absorbance spectroscopy measurements J. Appl. Phys. 101, 064909. Doi: http://dx.doi.org/10.1063/1.2537908.Google Scholar

  • Barilaro, D., Barone, G., Crupi, V., Donato, M.G., Majolino, D., Messina, G., Ponterio, R. (2005). Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy), Journal of Molecular Structure 744, 827-831. Doi: https://doi.org/10.1016/j.molstruc.2004.11.083.CrossrefGoogle Scholar

  • Barilaro, D., Crupi, V., Majolino, D., Venuti, V., Barone, G., Kockelmann, W. (2005). Characterization of pottery fragments by non-destructive neutron diffraction, J. Appl. Phys. 98, 103520.Google Scholar

  • Barone, G., Crupi V., Longo, F., Majolino, D., Mazzoleni, P., Spagnolo, G., Venuti, V., Aquilia, E. (2011). Potentiality of non-destructive XRF analysis for the determination of Corinthian B amphorae provenance, X-Ray Spectrometry 40(5), 333-337.CrossrefGoogle Scholar

  • Bonizzoni, L., Galli, A., Gondola, M., Martini, M. (2013). Comparison between XRF, TXRF, and PXRF analyses for provenance classification of archaeological bricks, X-Ray Spectrometry 42(4) 262-267.CrossrefGoogle Scholar

  • Bonizzoni, L., Galli, A., Milazzo, M. (2010). XRF analysis without sampling of Etruscan depurate pottery for provenance classification, X-Ray Spectrometry 39(5), 346-352.CrossrefGoogle Scholar

  • Bonizzoni, L., Galli, A., Poldi, G. (2008). In situ EDXRF analyses on Renaissance plaquettes and indoor bronzes patina problems and provenance clues, X-Ray Spectrometry 37(4), 388-394.CrossrefGoogle Scholar

  • Bonizzoni, L., Galli, A., Poldi, G., Milazzo, M. (2007). In situ non-invasive EDXRF analysis to reconstruct stratigraphy and thickness of Renaissance pictorial multilayers, X-Ray Spectrometry 36(7), 55-61.CrossrefGoogle Scholar

  • Casaletto, M.P., Chiozzini, G., De Caro, T., Ingo, G.M. (2006). A multi-analytical investigation on medieval pottery from Caltagirone (Sicily, Italy), Surf. Interface Anal. 38, 364-368.CrossrefGoogle Scholar

  • Ceccarelli, L., Rossetti, I., Primavesi, L., Stoddart, S. (2016). Non-destructive method for the identification of ceramic production by portable X-rays Fluorescence (pXRF). A case study of amphorae manufacture in central Italy, Journal of Archaeological Science: Reports 10, 253-262.Google Scholar

  • Cogswell, J.W., Neff, H., Glascock, M.D. (1996). The effect of firing temperature on the elemental characterization of pottery, Journal of Archaeological Science, 23, 283-287.CrossrefGoogle Scholar

  • Crupi, V., Majolino, D., Venuti, V., Barone, G., Mazzoleni, P., Pezzino, A., La Russa, M.F., Ruffolo, S.A., Bardelli, F. (2010). Non-destructive identification of green and yellow pigments: the case of some Sicilian Renaissance glazed pottery, Appl Phys A 100, 845-853.CrossrefGoogle Scholar

  • Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., De La Torre, M.J. (2001). Carbonate and silicate phase reactions during ceramic firing, European Journal of Mineralogy 13(3), 621-634.CrossrefGoogle Scholar

  • Cuomo di Caprio, N. (2007). Ceramica in archeologia. Antiche tecniche di lavorazione e moderni metodi di indagine. Roma: L’Erma di Bretschneider Ed. Di Grande, A., Giandinoto, V. (2002). Plio-Pleistocene sedimentary facies and their evolution in centre-south-eastern Sicily: a working hypothesis EGU Stephan Mueller, 1, 211-21.Google Scholar

  • Donais, M.K., Wojtas, S., Desmond, A., Duncan, B., George, D.B. (2012). Differentiation of Hypocaust and Floor Tiles at Coriglia, Castel Viscardo (Umbria, Italy) Using Principal Component Analysis (PCA) and Portable X-ray Fluorescence (XRF) Spectrometry, Applied Spectroscopy 66(9), 1005-1012.CrossrefGoogle Scholar

  • Eramo, G., Laviano, R., Muntoni, I.M., Volpe, G., (2004). Late Roman cooking pottery from the Tavoliere area (Southern Italy): raw materials and technological aspects, Journal of Cultural Heritage 5, 157-165.CrossrefGoogle Scholar

  • Fabbri, B., Fiori, C., Ravaglioli, A. (1989). Materie prime ceramiche. Biblioteca Tecnica Ceramica, Vol. I, II, III, Faenza Ed. Forster, N., Grave, P., Vickery, N., Kealhofer, L. (2011). Non-destructive analysis using PXRF: methodology and application to archaeological ceramics, X-Ray Spectrometry 40(5), 389-398.Google Scholar

  • Frahm, E., Doonan, R.C.P. (2013). The technological versus methodological revolution of portable XRF in archaeology, Journal of Archaeological Science 40(2), 1425-1434.CrossrefGoogle Scholar

  • Franceschi, E., Cascone, I., Nole, D. (2008). Study of artificially degraded woods simulating natural ageing of archaeological findings, Journal of Thermal Analysis and Calorimetry 92(1), 319-322. http://akademiai.com/doi/abs/10.1007/s10973-007-8722-3-d6411e52.CrossrefGoogle Scholar

  • Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sowyer, L., Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, Kluwer Academic, New York: Plenum Publisher.Google Scholar

  • Grave, P., Attenbrow, V., Sutherland, L., Pogson, R., Forster, N., (2012). Nondestructive pXRF of mafic stone tools. Journal of Archaeological Science 39, 1674-1686.Google Scholar

  • Hunt, A.M.W., Speakman, R.J. (2015). Portable XRF analysis of archaeological sediments and ceramics, Journal of Archaeological Science 53, 626-638.Google Scholar

  • Johari, I., Said, S., Hisham, B., Bakar, A., Ahmad, Z.A. (2010). Effect of the Change of Firing Temperature on Microstructure and Physical Properties of Clay Bricks from Beruas (Malaysia), Science of Sintering 42, 245-254.CrossrefGoogle Scholar

  • Kilikoglou, V., Maniatis, Y., Grimanis, A.P. (1988). The effect of puritfication and firing of clay on trace element provenance studies, Archaeometry 30(1), 37-46.CrossrefGoogle Scholar

  • Kurama, S., Kara, A., Kurama, H. (2006). The effect of boron waste in phase and microstructural development of a terracotta body during firing, Journal of the European Ceramic Society 26, 755-760.CrossrefGoogle Scholar

  • Leinghton, R., (1983). From late Bronze age to early iron age in south east Sicily: studied on the material remains from the cemeteries of Pantalica, Dessueri, Caltagirone and Cassibile, Ph unpublished thesis, University of Edinburgh.Google Scholar

  • Liritzis, I., Zacharias, N. (2010). Portable XRF of Archaeological Artifacts: Current Research, Potentials and Limitations, X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, 109-142.Google Scholar

  • Maniscalco, L. (1999). The Sicilian Bronze Age Pottery Service, in J. Morter J. Robb and R. Tykot (Eds.), Social Dinamic of the Prehistoric Central Mediterranean, Accordia London, 185-194.Google Scholar

  • Maritan, L., Nodari, L., Mazzoli, C., Milano, A., Russo, U., (2006). Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter; Applied Clay Science 31, 1-15CrossrefGoogle Scholar

  • Perlman, I., Asaro, F. (1969). Pottery analysis by neutron activation, Archaeometry 11, 21-52Google Scholar

  • Poole, A.B., Finch, L.R. (1972). The utilization of trace chimica composition to correlate British post-Mediaeval pottery with European kiln site materials. Archaeometry 14, 79-91.CrossrefGoogle Scholar

  • Ragona, A. (1949). La ceramica caltagironese alla luce dei documenti. Faenza, 2, 40-49.Google Scholar

  • Ragona, A. (1955). La ceramica siciliana dalle origini ai nostri giorni, Palermo: Assessorato Industria e Commercio Regione Sicilia.Google Scholar

  • Ragona, A. (1985). La maiolica siciliana dall’origine all’ottocento. Ed. Sellerio, Palermo.Google Scholar

  • Ragona, A. (1991). Terracotta, la Cultura Ceramica a Caltagirone, Catania: Domenico San Filippo Ed.Google Scholar

  • Shackley, M.S. (2010). Is there reliability and validity in portable x-ray fluorescence spectrometry (pXRF)? The SAA Archaeological Record 10, 17-20.Google Scholar

  • Shackley, M.S. (2012). Portable X-ray Fluorescence Spectrometry (pXRF): The Good, the Bad, and the Ugly, Archaeology Southwest Magazine 26(2), 1-8.Google Scholar

  • Speakman, R.J., Shackley, M.S. (2013). Silo science and portable XRF in archaeology: a response to Frahm, Journal of Archaeological Science 40, 1435-1443.CrossrefGoogle Scholar

  • Storey, J.M.V. (1988). A chemical study of clays and Roman pottery from the lower Nene valley, eastern England. Journal of Archaeological Science 15, 35-50.Google Scholar

  • Tykot, R.H, White, N.M., Du Vernay, J.P., Freeman, J.S., Hays, C.T, Koppe, M., Hunt, C.N., Weinstein, R.A., Woodward, D.S. (2013). Advantages and Disadvantages of pXRF for Archaeological Ceramic Analysis: Prehistoric Pottery Distribution and Trade in NW Florida, Archaeological Chemistry VIII 13, 233-244.Google Scholar

  • Tykot, R.H. (2016). Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations, Applied Spectroscopy 70(1), 42-56.Google Scholar

  • Wezel, F.C. (1964). Il Pliocene e Pleistocene di S. Michele di Ganzaria (Catania). Riv.It.Pal.Strat., 70 (2), 307-380.Google Scholar

  • Wezel, F.C. (1966). Geologia della Tavoletta Mirabella Imbaccari (prov. di Catania, Caltanissetta, Enna, F. 272, I NE). Boll. Soc. Geol. It., 84 (7), 3-136.Google Scholar

About the article

Received: 2016-11-30

Accepted: 2017-08-06

Published Online: 2017-09-23

Published in Print: 2017-09-26


Citation Information: Open Archaeology, Volume 3, Issue 1, Pages 235–246, ISSN (Online) 2300-6560, DOI: https://doi.org/10.1515/opar-2017-0014.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in