Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
More options …

Naphthodithiophene-Based Semiconducting Materials for Applications in Organic Solar Cells

Zishan Wu
  • Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tingbin Yang
  • Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beng S. Ong
  • Institute of Creativity and Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yongye Liang
  • Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xugang Guo
  • Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-09 | DOI: https://doi.org/10.2478/oph-2014-0002

References

  • [1] Cheng Y.-J., Yang S.-H., Hsu C.-S. Chem. Rev. 2009, 109, 5868. Google Scholar

  • [2] Liang Y., Yu L. Acc. Chem. Res. 2010, 43, 1227. Google Scholar

  • [3] Dou L., You J., Yang J., Chen C.-C., He Y.,Murase S., Moriarty T., Emery K., Li G., Yang Y. Nat. Photonics 2012, 6, 180. Google Scholar

  • [4] Krebs F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 394. Google Scholar

  • [5] Krebs F. C., Tromholt T., Jorgensen M. Nanoscale 2010, 2, 873. Google Scholar

  • [6] Krebs F. C., Gevorgyan S. A., Alstrup J. J. Mater. Chem. 2009, 19, 5442. Google Scholar

  • [7] Tang C. W. Appl. Phys. Lett. 1986, 48, 183. Google Scholar

  • [8] Kippelen B., Bredas J.-L. Energy Environ. Sci. 2009, 2, 251. Google Scholar

  • [9] Servaites J. D., Ratner M. A., Marks T. J. Energy Environ. Sci. 2011, 4, 4410. Google Scholar

  • [10] Coakley K. M., McGehee M. D. Chem. Mater. 2004, 16, 4533. Google Scholar

  • [11] He Z., Zhong C., Su S., Xu M.,Wu H., Cao Y. Nat. Photonics 2012, 6, 591. Google Scholar

  • [12] Gendron D., Leclerc M. Energy Environ. Sci. 2011, 4, 1225. Google Scholar

  • [13] Li G., Zhu R., Yang Y. Nat. Photonics 2012, 6, 153. Google Scholar

  • [14] Yu G.,Gao J., Hummelen J. C.,Wudl F., Heeger A. J. Science 1995, 270, 1789. Google Scholar

  • [15] Facchetti A. Chem. Mater. 2010, 23, 733. Google Scholar

  • [16] Boudreault P.-L. T., Najari A., Leclerc M. Chem.Mater. 2010, 23, 456. Google Scholar

  • [17] Li Y. Acc. Chem. Res. 2012, 45, 723. Google Scholar

  • [18] You J., Dou L., Yoshimura K., Kato T.,Ohya K., Moriarty T., Emery K., Chen C.-C., Gao J., Li G., Yang Y. Nat. Commun. 2013, 4, 1446. Google Scholar

  • [19] Lloyd M. T.,Mayer A. C., Subramanian S.,Mourey D. A., Herman D. J., Bapat A. V., Anthony J. E.,Malliaras G. G. J. Am. Chem. Soc. 2007, 129, 9144. Google Scholar

  • [20] Bagnis D., Beverina L., Huang H., Silvestri F., Yao Y., Yan H., Pagani G. A.,Marks T. J., Facchetti A. J. Am. Chem. Soc. 2010, 132, 4074. Google Scholar

  • [21] Chen Y.,Wan X., Long G. Acc. Chem. Res. 2013, 2013, 46, 2645. Google Scholar

  • [22] Kyaw A. K. K., Wang D. H., Gupta V., Zhang J., Chand S., Bazan G. C., Heeger A. J. Adv. Mater. 2013, 25, 2397. Google Scholar

  • [23] Sun Y., Welch G. C., Leong W. L., Takacs C. J., Bazan G. C., Heeger A. J. Nat. Mater. 2012, 11, 44. Google Scholar

  • [24] Coughlin J. E., Henson Z. B., Welch G. C., Bazan G. C. Acc. Chem. Res. 2013, 2014, 47, 257. Google Scholar

  • [25] Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D. Prog. Photovoltaics: Res. Appl. 2013, 21, 827. Google Scholar

  • [26] Günes S., Neugebauer H., Sariciftci N. S. Chem. Rev. 2007, 107, 1324. Google Scholar

  • [27] Chen J., Cao Y. Acc. Chem. Res. 2009, 42, 1709. Google Scholar

  • [28] Vandewal K., Gadisa A., Oosterbaan W. D., Bertho S., Banishoeib F., Van Severen I., Lutsen L., Cleij T. J., Vanderzande D., Manca J. V. Adv. Funct. Mater. 2008, 18, 2064. Google Scholar

  • [29] Tada A., Geng Y., Wei Q., Hashimoto K., Tajima, K. Nat. Mater. 2011, 10, 450. Google Scholar

  • [30] Scharber M. C.,Mühlbacher D., Koppe M., Denk P.,Waldauf C., Heeger A. J., Brabec C. J. Adv. Mater. 2006, 18, 789. Google Scholar

  • [31] Liang Y., Xu Z., Xia J., Tsai S.-T., Wu Y., Li G., Ray C., Yu L. Adv. Mater. 2010, 22, E135. Google Scholar

  • [32] Zhou H., Yang L., Stuart A. C., Price S. C., Liu S., YouW. Angew. Chem., Int. Ed. 2011, 123, 3051. Google Scholar

  • [33] Zou Y., Najari A., Berrouard P., Beaupré S., Réda Adch B., Tao Y., Leclerc M. J. Am. Chem. Soc. 2010, 132, 5330. Google Scholar

  • [34] Zhou N., Guo X., Ortiz R. P., Li S., Zhang S., Chang R. P. H., Facchetti A., Marks T. J. Adv. Mater. 2012, 24, 2242. Google Scholar

  • [35] Zheng Q., Jung B. J., Sun J., Katz H. E. J. Am. Chem. Soc. 2010, 132, 5394. Google Scholar

  • [36] Guo X., Cui C., Zhang M., Huo L., Huang Y., Hou J., Li Y. Energy Environ. Sci. 2012, 5, 7943. Google Scholar

  • [37] Li W., Hendriks K. H., Roelofs W. S. C., Kim Y., Wienk M. M., Janssen R. A. J. Adv. Mater. 2013, 25, 3182. Google Scholar

  • [38] Hirade M., Adachi C. Appl. Phys. Lett. 2011, 99, 153302. Google Scholar

  • [39] Wagner J., Gruber M., Hinderhofer A.,Wilke A., Bröker B., Frisch J., Amsalem P., Vollmer A., Opitz A., Koch N., Schreiber F., Brütting W. Adv. Funct. Mater. 2010, 20, 4295. Google Scholar

  • [40] Guo X., Zhou N., Lou S. J., Smith J., Tice D. B., Hennek J. W., Ortiz R. P., Navarrete J. T. L., Li S., Strzalka J., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J. Nat. Photonics 2013, 7, 825. Google Scholar

  • [41] Roncali J. Chem. Rev. 1997, 97, 173. Google Scholar

  • [42] Guo X., Kim F. S., Seger M. J., Jenekhe S. A.,Watson M. D. Chem. Mater 2012, 24, 1434. Google Scholar

  • [43] Guo X., Watson M. D. Macromolecules 2011, 44, 6711. Google Scholar

  • [44] Akoudad S., Roncali J. Chem. Commun. 1998, 2081. Google Scholar

  • [45] Guo X., Ortiz R. P., Zheng Y., Hu Y., Noh Y.-Y., Baeg K.-J., Facchetti A., Marks T. J. J. Am. Chem. Soc. 2011, 133, 1405. Google Scholar

  • [46] Zhao Y., Guo Y., Liu Y. Adv. Mater. 2013, DOI: 10.1002/adma.201302315. CrossrefGoogle Scholar

  • [47] Nielsen C. B., Turbiez M., McCulloch I. Adv. Mater. 2013, 25, 1859. Google Scholar

  • [48] Liang Y., Wu Y., Feng D., Tsai S.-T., Son H.-J., Li G., Yu L. J. Am. Chem. Soc. 2008, 131, 56. Google Scholar

  • [49] Liang Y., Feng D., Wu Y., Tsai S.-T., Li G., Ray C., Yu L. J. Am. Chem. Soc. 2009, 131, 7792. Google Scholar

  • [50] Guo X., Xin H., Kim F. S., Liyanage A. D. T., Jenekhe S. A.,Watson M. D. Macromolecules 2010, 44, 269. Google Scholar

  • [51] Amb C. M., Chen S., Graham K. R., Subbiah J., Small C. E., So F., Reynolds J. R. J. Am. Chem. Soc. 2011, 133, 10062. Google Scholar

  • [52] Guo X., Quinn J., Chen Z., Usta H., Zheng Y., Xia Y., Hennek J. W., Ortiz R. P., Marks T. J., Facchetti A. J. Am. Chem. Soc. 2013, 135, 1986. Google Scholar

  • [53] Pan H., Li Y., Wu Y., Liu P., Ong B. S., Zhu S., Xu G. J. Am. Chem. Soc. 2007, 129, 4112. Google Scholar

  • [54] Huo L., Hou J. Polym. Chem. 2011, 2, 2453. Google Scholar

  • [55] Osaka I., McCullough R. D. Acc. Chem. Res. 2008, 41, 1202. Google Scholar

  • [56] Hou J., Park M.-H., Zhang S., Yao Y., Chen L.-M., Li J.-H., Yang Y. Macromolecules 2008, 41, 6012. Google Scholar

  • [57] Zhou J., Zuo Y., Wan X., Long G., Zhang Q., Ni W., Liu Y., Li Z., He G., Li C., Kan B., Li M., Chen Y. J. Am. Chem. Soc. 2013, 135, 8484. Google Scholar

  • [58] Coropceanu V., Kwon O., Wex B., Kaafarani B. R., Gruhn N. E., Durivage J. C., Neckers D. C., Brédas J.-L. Chem.–Eur. J. 2006, 12, 2073. Google Scholar

  • [59] Jones B. A., Facchetti A., Wasielewski M. R., Marks T. J. J. Am. Chem. Soc. 2007, 129, 15259. Google Scholar

  • [60] Zheng Q., Huang J., Sarjeant A., Katz H. E. J. Am. Chem. Soc. 2008, 130, 14410. Google Scholar

  • [61] Osaka I., Shinamura S., Abe T., Takimiya K. J. Mater. Chem. 2013, 1, 1297. Google Scholar

  • [62] Shinamura S., Osaka I., Miyazaki E., Nakao A., Yamagishi M., Takeya J., Takimiya K. J. Am. Chem. Soc. 2011, 133, 5024. Google Scholar

  • [63] Osaka I., Abe T., Shinamura S., Takimiya K. J. Am. Chem. Soc. 2011, 133, 6852. Google Scholar

  • [64] Fukutomi Y., Nakano M., Hu J.-Y., Osaka I., Takimiya K. J. Am. Chem. Soc. 2013, 135, 11445. Google Scholar

  • [65] Loser S., Bruns C. J., Miyauchi H., Ortiz R. P., Facchetti A., Stupp S. I., Marks T. J. J. Am. Chem. Soc. 2011, 133, 8142. Google Scholar

  • [66] Loser S., Miyauchi H., Hennek J. W., Smith J., Huang C., Facchetti A., Marks T. J. Chem. Commun. 2012, 48, 8511. Google Scholar

  • [67] Osaka I., Kakara T., Takemura N., Koganezawa T., Takimiya K. J. Am. Chem. Soc. 2013, 135, 8834. Google Scholar

  • [68] Dutta T., Li Y., Thornton A. L., Zhu D.-M., Peng Z. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3818. Google Scholar

  • [69] Sanjaykumar S. R., Badgujar S., Song C. E., Shin W. S., Moon S.-J., Kang I.-N., Lee J., Cho S., Lee S. K., Lee J.-C. Macromolecules 2012, 45, 6938. Google Scholar

  • [70] Mori T., Kijima M. Opt. Mater. 2007, 30, 545. Google Scholar

  • [71] Lin Y., Li Y., Zhan X. Chem. Soc. Rev. 2012, 41, 4245. Google Scholar

  • [72] Peng Q., Huang Q., Hou X., Chang P., Xu J., Deng S. Chem. Commun. 2012, 48, 11452. Google Scholar

  • [73] Yang T., Wang M., Duan C., Hu X., Huang L., Peng J., Huang F., Gong X. Energy Environ. Sci. 2012, 5, 8208. Google Scholar

  • [74] Li K., Li Z., Feng K., Xu X., Wang L., Peng Q. J. Am. Chem. Soc. 2013, 135, 13549. Google Scholar

  • [75] Sylvester-Hvid K., Sorensenorensen J., Schaumburg K., Bechgaard K., Christensen J. B. Synth. Commun. 1993, 23, 1905. Google Scholar

  • [76] Cabanetos C., El Labban A., Bartelt J. A., Douglas J. D.,Mateker W. R., Fréchet J. M. J., McGehee M. D., Beaujuge P. M. J. Am. Chem. Soc. 2013, 135, 4656. Google Scholar

  • [77] Shinamura S., Miyazaki E., Takimiya K. J. Org. Chem. 2010, 75, 1228. Google Scholar

  • [78] Dutta P., Yang W., Eom S. H., Lee W.-H., Kang I. N., Lee S.-H. Chem. Commun. 2012, 48, 573. Google Scholar

  • [79] Dutta P., YangW., LeeW.-H., Kang I. N., Lee S.-H. J.Mater. Chem. 2012, 22, 10840. Google Scholar

  • [80] Dutta P., Park H., Lee W.-H., Kang I.-N., Lee S.-H. Org. Electron. 2012, 13, 3183. Google Scholar

  • [81] Osaka I., Abe T., Shimawaki M., Koganezawa T., Takimiya K. ACS Macro Lett. 2012, 1, 437. Google Scholar

  • [82] Dutta P., Park H., Lee W.-H., Kim K., Kang I. N., Lee S.-H. Polym. Chem. 2012, 3, 601. Google Scholar

  • [83] Dutta P., Park H., Lee W.-H., Kang I. N., Lee S.-H. Polym. Chem. 2014, 2014, 5, 132. Google Scholar

  • [84] Guo X., Ortiz R. P., Zheng Y., Kim M.-G., Zhang S., Hu Y., Lu G., Facchetti A., Marks T. J. J. Am. Chem. Soc. 2011, 133, 13685. Google Scholar

  • [85] Dutta P., Park H., Oh M., Bagde S., Kang I. N., Lee S.-H. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948. Google Scholar

  • [86] Shoaee S., Clarke T. M., Huang C., Barlow S., Marder S. R., Heeney M., McCulloch I., Durrant J. R. J. Am. Chem. Soc. 2010, 132, 12919. Google Scholar

  • [87] Guerrero A., Loser S., Garcia-Belmonte G., Bruns C. J., Smith J., Miyauchi H., Stupp S. I., Bisquert J., Marks T. J. Phys. Chem. Chem. Phys. 2013, 15, 16456. Google Scholar

  • [88] Shi S., Jiang P., Yu S., Wang L., Wang X., Wang M., Wang H., Li Y., Li X. J. Mater. Chem. 2013, 1, 1540. Google Scholar

  • [89] Shi S., Xie X., Jiang P., Chen S., Wang L., Wang M., Wang H., Li X., Yu G., Li Y. Macromolecules 2013, 46, 3358. Google Scholar

  • [90] Bathula C., Song C. E., Badgujar S., Hong S.-J., Park S. Y., Shin W. S., Lee J.-C., Cho S., Ahn T., Moon S.-J., Lee S. K. Polym. Chem. 2013, 4, 2132. Google Scholar

  • [91] Son H. J.,WangW., Xu T., Liang Y.,Wu Y., Li G., Yu L. J. Am. Chem. Soc. 2011, 133, 1885. Google Scholar

  • [92] Chen H.-Y., Hou J., Zhang S., Liang Y., Yang G., Yang Y., Yu L.,Wu Y., Li G. Nat. Photonics 2009, 3, 649. Google Scholar

  • [93] Shi S., Xie X., Qu R., Chen S.,Wang L.,Wang M.,Wang H., Li X., Yu G. R. RSC Adv. 2013, 3, 18944. Google Scholar

  • [94] Shinamura S., Sugimoto R., Yanai N., Takemura N., Kashiki T., Osaka I., Miyazaki E., Takimiya K. Org. Lett. 2012, 14, 4718. Google Scholar

  • [95] Woo C. H., Beaujuge P. M., Holcombe T. W., Lee O. P., Fréchet J. M. J. J. Am. Chem. Soc. 2010, 132, 15547. Google Scholar

  • [96] Liu B., Chen X., He Y., Xiao L., Li Y., Zhou K., Fan L., Zou Y. RSC Adv. 2013, 3, 5366. Google Scholar

  • [97] Xiao S., Zhou H., You W. Macromolecules 2008, 41, 5688. Google Scholar

  • [98] Zhou H., Yang L., Stoneking S., You W. ACS Appl. Mater. Interfaces 2010, 2, 1377. Google Scholar

  • [99] Kleinhenz N., Yang L., Zhou H., Price S. C., You W. Macromolecules 2011, 44, 872. Google Scholar

  • [100] Zhou H., Yang L., Liu S., You W. Macromolecules 2010, 43, 10390. Google Scholar

  • [101] Yang L., Zhou H., You W. J. Phys. Chem. C, 2010, 114, 16793. Google Scholar

  • [102] Blouin N., Michaud A., Gendron D., Wakim S., Blair E., Neagu- Plesu R., Belletete M., Durocher G., Tao Y., Leclerc M. J. Am. Chem. Soc. 2008, 130, 732. Google Scholar

  • [103] Zhou H., Yang L., Price S. C., Knight K. J., YouW. Angew. Chem., Int. Ed. 2010, 49, 7992. Google Scholar

  • [104] Yang L., Tumbleston J. R., Zhou H., Ade H., You W. Energy Environ. Sci. 2013, 6, 316. Google Scholar

  • [105] Wang B., Tsang S.-W., ZhangW., Tao Y., Wong M. S. Chem. Commun. 2011, 47, 9471. Google Scholar

  • [106] Cheng S.-W., Chiou D.-Y., Lai Y.-Y., Yu R.-H., Lee C.-H., Cheng Y.-J. Org. Lett. 2013, 15, 5338. Google Scholar

About the article


Received: 2013-07-09

Accepted: 2013-10-11

Published Online: 2014-06-09


Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.2478/oph-2014-0002.

Export Citation

©2014 Anna Spalletti et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Guo Chen, Changfeng Si, Zhenyu Tang, Kunping Guo, Taohong Wang, Jianhua Zhang, and Bin Wei
Synthetic Metals, 2016, Volume 222, Page 293
[2]
Shengbin Shi, Qiaogan Liao, Yumin Tang, Han Guo, Xin Zhou, Yulun Wang, Tingbin Yang, Yongye Liang, Xing Cheng, Feng Liu, and Xugang Guo
Advanced Materials, 2016, Volume 28, Number 45, Page 9969
[3]
Nanjia Zhou, Xugang Guo, Rocio Ponce Ortiz, Tobias Harschneck, Eric F. Manley, Sylvia J. Lou, Patrick E. Hartnett, Xinge Yu, Noah E. Horwitz, Paula Mayorga Burrezo, Thomas J. Aldrich, Juan T. López Navarrete, Michael R. Wasielewski, Lin X. Chen, Robert. P. H. Chang, Antonio Facchetti, and Tobin J. Marks
Journal of the American Chemical Society, 2015, Volume 137, Number 39, Page 12565

Comments (0)

Please log in or register to comment.
Log in