Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
In This Section

Hyperspectral imaging of polymer/fullerene blends

Armida Torreggiani
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
/ Francesca Tinti
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
/ Alberto Savoini
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
  • Research Center for non Conventional Energies, Istituto eni Donegani, eni S.p.A. via Fauser 4, I-28100 Novara, Italy
/ Michele Melchiorre
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
/ Riccardo Po
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
  • Research Center for non Conventional Energies, Istituto eni Donegani, eni S.p.A. via Fauser 4, I-28100 Novara, Italy
/ Nadia Camaioni
  • Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche via Gobetti 101, I-40129 Bologna, Italy
Published Online: 2014-10-20 | DOI: https://doi.org/10.2478/oph-2014-0003

Abstract

The effectiveness of a hyperspectral imaging system integrated on an enhanced dark-field microscope for probing the microscale morphology of model poly(3- hexylthiopene): [6,6]-phenyl-C61- butyric acid methyl ester (P3HT:PCBM) blends is demonstrated. This non-contact technique provides both spectral and spatial information in one measurement, providing an effective mapping of the presence and location of the component materials in the investigated P3HT:PCBM blends spincoated over different substrates (zinc oxide, poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate). The hyperspectral analysis accounts for the micro-scale morphology of P3HT:PCBM blends, even in case of high film roughness, and the quantitative determination of blend components reveals a preferential accumulation of the lowenergy material (P3HT) at the interface with air, confirming the findings reported with other mapping techniques

Keywords: polymer solar cells; conjugated polymers; fullerene; enhanced dark-field microscopy; hyperspectral imaging

References

  • [1] F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).

  • [2] G. Yu, A. J. Heeger, J. Appl. Phys. 78, 4510 (1995).

  • [3] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 376, 498 (1995).

  • [4] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nature Photon. 6, 591 (2012).

  • [5] X. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. Ponce Ortiz, J. T. López Navarrete, S. Li, J. Strzalka, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Nature Photon. 7, 825 (2013).

  • [6] S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Adv. Mater. 25, 4766 (2013).

  • [7] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed May 2014).

  • [8] Y. Li, Accounts Chem. Res. 45, 723 (2012).

  • [9] C. J. Brabec, M. Heeney, I.McCulloch, J. Nelson, Chem. Soc. Rev. 40, 1185 (2011).

  • [10] G. Li, R. Zhu, Y. Yang, Nature Photon. 6, 153 (2012).

  • [11] P. Westacott, J. R. Tumbleston, S. Shoaee, S. Fearn, J. H. Bannock, J. B. Gilchrist, S. Heutz, J. deMello, M. Heeney, H. Ade, J. Durrant, D. S. McPhaila, N. Stingelin, Energy Environ. Sci., 6, 2756 (2013).

  • [12] A. Pivrikas, N. S. Sariciftci, G. Juška, R. Österbacka, Prog. Photovolt: Res. Appl. 15, 677 (2007).

  • [13] W.Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct.Mater. 15, 1617 (2005).

  • [14] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater. 4, 864 (2005).

  • [15] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nature Mater. 6, 497 (2007).

  • [16] M. Campoy-Quiles, V. Randon, M. M. Mróz, M. Jarzaguet, M. Garriga, J. Cabanillas-González, Org. Photonics Photovolt. 1, 11 (2013).

  • [17] L.-M. Chen, Z. Hong, G. Li, Y. Yang, Adv.Mater. 21, 1434 (2009).

  • [18] T. A. Harris, Cytometry Part A 69A, 872 (2006).

  • [19] B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, M. W. Dewhirst. J. Biomed. Opt. 10, 44004 (2005).

  • [20] G. Sacco Verebes, M. Melchiorre, A. Garcia-Leis, C. Ferreri, C. Marzetti, A. Torreggiani, J. Biophotonics 6, 960 (2013)

  • [21] H. Grahn, P. Geladi, in: Techniques and Applications of Hyperspectral Image Analysis (John Wiley and Sons Ltd: Chichester, West Sussex, 2009) p. 361.

  • [22] A. R. Badireddy, M. R.Wiesner, J. Liu, Environ. Sci. Technol. 46, 10081 (2012).

  • [23] M. C. Scharber, D.Mühlbacher, M. Koppe, P. Denk, C.Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 18, 789 (2006).

  • [24] B. A. Collins, J. R. Tumbleston, H. Ade, J. Phys. Chem.Lett. 2, 3135 (2011).

  • [25] C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupre, M. Leclerc, M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).

  • [26] L. Chang, H. W. A. Lademann, J.-B. Bonekamp, K. Meerholz, A. Moulé, Adv. Funct. Mater. 21, 1779 (2011).

  • [27] D. R. Kozub, K. Vakhshouri, L. M. Orme, C. Wang, A. Hexemer, E. D. Gomez, Macromolecules 44, 5722 (2011).

  • [28] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).

  • [29] G. Li, V. Shrotriya, Y. Yao, J. Huang, Y. Yang, J. Mater. Chem. 17, 3126 (2007).

  • [30] R. C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, C. Dagron-lartigau, Adv. Funct. Mater. 16, 2263 (2006).

  • [31] T. J. Savenije, J. E. Kroeze, X. N. Yang, J. Loos, Adv. Funct.Mater. 15, 1260 (2005).

  • [32] A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, J. Manca, Adv. Funct. Mater. 16, 760 (2006).

  • [33] X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 16, 802 (2004).

  • [34] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nature Mater. 7, 158 (2008).

  • [35] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci., 4, 285 (2011).

  • [36] R. M. Beal, A. Stavrinadis, J. H. Warner, J. M. Smith, H. E. Assender, A. A. R. Watt, Macromolecules 43, 2343 (2010).

  • [37] S. A. Mauger, L. Chang, S. Friedrich, C. W. Rochester, D. M. Huang, P. Wang, A. J. Moulé, Adv. Funct. Mater. 23, 1935 (2013).

  • [38] H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes- Hernandez, K. H. Sandhage, B. Kippelen, Energy Environ. Sci. 4, 3456 (2011).

  • [39] J. Y. Oh, W. S. Jang, T. I. Lee, J.-M. Myoung, H. K. Baik, Appl. Phys. Lett. 98, 023303 (2011).

  • [40] C. M. Björström., S. Nilsson, A. Bernasik, A. Budkowski, M. Andersson, K. O. Magnusson, E. Moons, Appl. Surf. Sci., 253, 3906 (2007).

  • [41] Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).

  • [42] M. Passos Felicissimo, D. Jarzab, M. Gorgoi, M. Forster, U. Scherf, M. C. Scharber, S. Svensson, P. Rudolf, M. A. Loi, J. Mater. Chem. 19, 4899 (2009).

  • [43] B. Watts, W. J. Belcher, L. Thomsen, H. Ade, P. C. Dastoor, Macromolecules 42, 8392 (2009).

  • [44] I.-J. Wang, S.-C. Shiu, M.-Y. Lin, J.-S. Huang, Y.-H. Lin, C.-F. Lin, Sol. Energy Mater. Sol. Cells 94, 1681 (2010).

  • [45] D. S. Germack, C. K. Chan, R. J. Kline, D. A. Fischer, D. J. Gundlach, M. F. Toney, L. J. Richter, D. M. DeLongchamp, Macromolecules 43, 3828 (2010).

  • [46] H. Lu, B. Akgun, T. P. Russell, Adv. Energy Mater. 1, 870 (2011).

  • [47] J. Bandara, K. Shankar, C. A. Grimes, M. Thelakkat, Thin Solid Films 520, 582, (2011).

  • [48] Y. Jouane, S. Colis, G. Schmerber, C. Leuvrey, A. Dinia, P. Lévèque, T. Heiser, Y.-A. Chapuis, J. Mater. Chem. 22, 1606 (2012).

  • [49] O. Oklobia, T. S. Shafai, Solid State Electron. 87, 64 (2013).

  • [50] C. Koidis, S. Logothetidis, A. Ioakeimidis, A. Laskarakis, C. Kapnopoulos, Org. Electron. 14, 1744 (2013).

  • [51] M. D. Clark, M. L. Jespersen, R. J. Patel, B. J. Leever, ACS Appl. Mater. Interf. 5, 4799 (2013).

  • [52] E. Pavlopoulou, G. Fleury, D. Deribew, F. Cousin, M. Georghegan, G. Hadziioannou, Org. Electron. 14, 1249 (2013).

  • [53] S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 42, 7396 (2009).

About the article


Received: 2013-08-16

Accepted: 2014-01-10

Published Online: 2014-10-20



Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.2478/oph-2014-0003. Export Citation

©2014 Armida Torreggiani et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in