Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
In This Section

Electric Field Distribution in Hybrid Solar Cells Comprising an Organic Donor Polymer and Amorphous Silicon

S. Schaefer
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
/ S. Albrecht
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
/ D. Neher
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
/ T. F. Schulze
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
/ E. Conrad
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
/ L. Korte
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
/ B. Rech
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
/ J. Wördenweber
  • IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
/ A. Gordijn
  • IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
/ U. Scherf
  • Bergische Universität Wuppertal, Macromolecular Chemistry and Institute for Polymer Technology, Gauss-Strasse 20, D-42097 Wuppertal, Germany
/ I. Dumsch
  • Bergische Universität Wuppertal, Macromolecular Chemistry and Institute for Polymer Technology, Gauss-Strasse 20, D-42097 Wuppertal, Germany
Published Online: 2014-06-09 | DOI: https://doi.org/10.2478/oph-2014-0004

Abstract

We present a study on the performance and analysis of hybrid solar cells comprising a planar heterojunction between between a conjugated donor polymer, P3HT or PCPDTBT, and hydrogenated amorphous silicon (a-Si:H). A comparison of the modeled absorption spectra of the layer stack with the measured external quantum efficiency is used to investigate the contribution of the inorganic and organic material to the photocurrent generation in the device. Although both materials contribute to the photocurrent, the devices exhibit poor quantum efficiencies and low short circuit currents. Bandstructure simulations of the hybrid layer structure reveal that an unfavorable electric field distribution within the planar multilayer structure limits the performance. Using electroabsorption measurements we can show that the electric field is extremelyweak in the amorphous silicon but strong in the organic material. The situation changes drasticallywhen the conjugated polymer is p-doped. Doping not only increases the conductivity of the organic material, but also restores the electric field in the amorphous silicon layer. Optimized hybrid solar cells comprising thin doped P3HT layers exhibit energy conversion efficiencies (ECE) up to 2.8 %.

References

  • [1] G. Li, R. Zhu, and Y. Yang, Nature Photonics 6, 153 (2012). [Crossref]

  • [2] P. J. Alet, S. Palacin, P. R. I. Cabarrocas, B. Kalache, M. Firon, and R. de Bettignies, European Physical Journal-Applied Physics 36, 231 (2006).

  • [3] V. Gowrishankar, S. R. Scully, M. D. McGehee, Q. Wang, and H. M. Branz, Applied Physics Letters 89, 3 (2006).

  • [4] E. L. Williams, G. E. Jabbour, Q. Wang, S. E. Shaheen, D. S. Ginley, and E. A. Schiff, Applied Physics Letters 87, 3 (2005).

  • [5] J. H. Seo, D. H. Kim, S. H. Kwon, M. Song, M. S. Choi, R. S. Y., H.W. Lee, Y. C. Park, J. D. Kwon, K. S. Nam, Y. Jeong, J.W. Kang, and C. S. Kim, Advanced Materials 24, 4523 (2012). [Crossref]

  • [6] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, Applied Physics Letters 90, 3 (2007).

  • [7] C. H. Chao, C. H. Chan, F. C. Wu, J. J. Huang, S. Y. Lien, K. W. Weng, and H. L. Cheng, Solar Energy Materials and Solar Cells 95, 2407 (2011).

  • [8] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1 edition, 1991.

  • [9] M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen, M. Scharber, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, Adv. Func. Mater. 18, 1757 (2008).

  • [10] I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, and D. Neher, Physical Review Letters 106, 4 (2011).

  • [11] R. Stangl, C. Leendertz, and J. Haschke, Solar Energy (RD Rugescu, ed.), INTECH, Croatia , 319 (2010).

  • [12] S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J. C. Blakesley, I. Dumsch, S. Allard, K. Fostiropoulos, U. Scherf, and D. Neher, Journal of Physical Chemistry Letters 3, 640 (2012). [Crossref]

  • [13] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. J. Brabec, Advanced Materials 18, 2884 (2006). [Crossref]

  • [14] K. F. Jeltsch, M. Schädel, J. B. Bonekamp, P. Niyamakom, F. Rauscher, H.W. A. Lademann, I. Dumsch, S. Allard, U. Scherf, and K. Meerholz, Adv. Funct. Mater. 22, 397 (2012). [Crossref]

  • [15] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mühlbacher, M. Scharber, and C. J. Brabec, Macromolecules 40, 1981 (2007).

  • [16] G. F. Burkhard, E. T. Hoke, and M. D. McGehee, Advanced Materials 22, 3293 (2010). [Crossref]

  • [17] L. A. A. Pettersson, L. S. Roman, and O. Inganas, Journal of Applied Physics 86, 487 (1999).

  • [18] F. C. Spano, J. Clark, C. Silva, and R. H. Friend, Journal of Chemical Physics 130, 16 (2009).

  • [19] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Physical Review Letters 91, 4 (2003).

  • [20] Y. A. Zhang and P. W. M. Blom, Applied Physics Letters 97, 3 (2010).

  • [21] I. Salzmann, G. Heimel, S. Duhm, M. Oehzelt, P. Pingel, B. M. George, A. Schnegg, K. Lips, R. P. Blum, A. Vollmer, and N. Koch, Physical Review Letters 108, 035502 (2012). [Crossref]

  • [22] R. Stangl, M. Kriegel, S. Kirste, M. Schmidt, and W. Fuhs, Proc. IEEE-31, 31th IEEE Photovoltaics Specialists Conference, Orlando, USA (January 2005).

  • [23] L. Korte and M. Schmidt, Journal of Non-Crystalline Solids 354, 2138 (2008).

  • [24] P. Pingel, R. Schwarzl, and D. Neher, Applied Physics Letters 100, 143303 (2012). [Crossref]

  • [25] P. A. Lane, J. Rostalski, C. Giebeler, S. J.Martin, D. D. C. Bradley, and D. Meissner, Solar Energy Materials and Solar Cells 63, 3 (2000).

  • [26] M. C. Gather, R. Jin, J. de Mello, D. D. C. Bradley, and K. Meerholz, Applied Physics B 95, 113 (2009).

  • [27] I. H. Campbell, J. P. Ferraris, T. W. Hagler, M. D. Joswick, I. D. Parker, and D. L. Smith, Polymers for Advanced Technologies 8, 417 (1997). [Crossref]

  • [28] J. H. Lyou and E. A. Schiff, Review of Scientific Instruments 75, 921 (2004).

  • [29] G. Weiser, U. Dersch, and P. Thomas, Philosophical Magazine B-Physics of CondensedMatter Statistical Mechanics Electronic Optical and Magnetic Properties 57, 721 (1988).

  • [30] R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, Science 287, 839 (2000).

  • [31] P. J. Brown, H. Sirringhaus, and R. H. Friend, Synthetic Metals 101, 557 (1999). [Crossref]

About the article


Received: 2013-08-16

Accepted: 2014-01-10

Published Online: 2014-06-09



Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.2478/oph-2014-0004. Export Citation

©2014 S. Schaefer et al. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in