Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
In This Section

A-D-A-Type Oligothiophenes Containing Benzothiadiazole Terminal Units for Small Molecule Organic Solar Cells

Simon Steinberger
  • Institut für Organische Chemie und Neue Materialien, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
/ Amaresh Mishra
  • Institut für Organische Chemie und Neue Materialien, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
/ Gisela Schulz
  • Institut für Organische Chemie und Neue Materialien, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
/ Christian Uhrich
  • Heliatek GmbH, Treidlerstrasse 3, 01139 Dresden, Germany
/ Martin Pfeiffer
  • Heliatek GmbH, Treidlerstrasse 3, 01139 Dresden, Germany
/ Peter Bäuerle
  • Institut für Organische Chemie und Neue Materialien, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
Published Online: 2014-10-20 | DOI: https://doi.org/10.2478/oph-2014-0005

Abstract

The electron-deficient, fused-heterocyclebenzo[c][1,2,5]thiadiazole (BTDA) is investigated as acceptor group in A-D-A-type oligothiophenes in order to correlate their relative acceptor strength with opto-electronic and photovoltaic properties. In this respect, two novel BDTA-capped oligothiopheneswere synthesized and characterized by optical and electrochemical measurements. They showed broad absorptions in the visible spectrum and HOMO-LUMO energies well suited for organic solar cells. The attachment of terminal BTDA acceptor units to the conjugated oligothiophene backbone resulted in a hypsochromic shift in UV-Vis absorption and larger band gap in comparison to previously reported analogous dicyanovinylene (DCV)-substituted oligothiophenes indicating that BDTA is a weaker acceptor than DCV. Vacuumprocessed m-i-p (metal-intrinsic-p-doped)-type bilayer solar cells using these co-oligomers as donor and C60 as acceptor gave moderate power conversion efficiencies of around 1.0%. Bulk-heterojunction (BHJ) solar cells prepared by solution-processing using fullerene PC61BM as acceptor generated slightly lower efficiencies of 0.9%, whichwere increased to 1.5% by using the higher fullerene PC71BM. It was found that the cell efficiencies were mostly limited by the low photocurrent densities due to moderate light absorption in the bilayer devices and low fill factors coming from inefficient charge transport in the solutionprocessed BHJ devices.

References

  • [1] A. Mishra, P. Bäuerle, Angew. Chem. Int. Ed., 51, 2020 (2012).

  • [2] Y. Lin, Y. Li, X. Zhan, Chem. Soc. Rev., 41, 4245 (2012).

  • [3] Y. Chen, X. Wan, G.Long, Acc. Chem. Res., 46, 2645 (2013).

  • [4] J. E. Coughlin, Z. B. Henson, G. C. Welch, G. C. Bazan, Acc. Chem. Res., 47, 257 (2013).

  • [5] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, J. Am. Chem. Soc., 135, 8484 (2013).

  • [6] A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, A. J. Heeger, Adv. Mater., 25, 2397 (2013).

  • [7] V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep., 3, 1965 (2013).

  • [8] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Körner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bäuerle, J. Am. Chem. Soc., 134, 11064 (2012).

  • [9] Y.-H. Chen, L.-Y. Lin, C.-W. Lu, Z.-Y. Huang, H.-W. Lin, F. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller, S. B. Darling, J. Am. Chem. Soc., 134, 13616 (2012).

  • [10] J. Liu, Y. Sun, P. Moonsin, M. Kuik, C. M. Proctor, J. Lin, B. B. Hsu, V. Promarak, A. J. Heeger, T.-Q. Nguyen, Adv. Mater., 25, 5898 (2013).

  • [11] A. N. Bartynski, C. Trinh, A. Panda, K. Bergemann, B. E. Lassiter, J. D. Zimmerman, S. R. Forrest, M. E. Thompson, Nano Lett., 13, 3315 (2013). [PubMed]

  • [12] N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, K. Meerholz, Adv. Mater., 22, 4193 (2010).

  • [13] S. Haid, A. Mishra, C. Uhrich, M. Pfeiffer, P. Bäuerle, Chem. Mater., 23, 4435 (2011).

  • [14] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Körner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bäuerle, Adv. Funct. Mater., 21, 897 (2011).

  • [15] Y. Liu, Y. Yang, C.-C. Chen, Q. Chen, L. Dou, Z. Hong, G. Li, Y. Yang, Adv. Mater., 25, 4657 (2013).

  • [16] S. Steinberger, A. Mishra, E. Reinold, C. M. Müller, C. Uhrich, M. Pfeiffer, P. Bäuerle, Org. Lett., 13, 90 (2011).

  • [17] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Chem. Commun., 47, 1982 (2011).

  • [18] H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Adv. Mater., 23, 1554 (2011).

  • [19] P. Dutta, J. Kim, S. H. Eom, W.-H. Lee, I. N. Kang, S.-H. Lee, ACS Appl. Mater. Interfaces, 4, 6669 (2012).

  • [20] W. Yong, M. Zhang, X. Xin, Z. Li, Y. Wu, X. Guo, Z. Yang, J. Hou, J. Mater. Chem. A, 1, 14214 (2013).

  • [21] B. H. Wunsch, M. Rumi, N. R. Tummala, C. Risko, D.-Y. Kang, K. X. Steirer, J. Gantz, M. Said, N. R. Armstrong, J.-L. Bredas, D. Bucknall, S. R. Marder, J. Mater. Chem. C, 1, 5250 (2013).

  • [22] P. Li, H. Tong, J. Liu, J. Ding, Z. Xie, L.Wang, RSC Adv., 3, 23098 (2013).

  • [23] Y. Chen, Z. Du,W. Chen, S. Wen, L. Sun, Q. Liu, M. Sun, R. Yang, New J. Chem., 38, 1559 (2014).

  • [24] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nat. Mater., 11, 44 (2012).

  • [25] S. Steinberger, A. Mishra, E. Reinold, E. Mena-Osteritz, H. Muller, C. Uhrich, M. Pfeiffer, P. Bäuerle, J. Mater. Chem., 22, 2701 (2012).

  • [26] Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 109, 5868 (2009).

  • [27] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater., 6, 497 (2007).

  • [28] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photon., 3, 297 (2009).

  • [29] M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, K. Müllen, J. Am. Chem. Soc., 129, 3472 (2007).

  • [30] R. S. Ashraf, A. J. Kronemeijer, D. I. James, H. Sirringhaus, I. McCulloch, Chem. Commun., 48, 3939 (2012).

  • [31] B. Fu, J. Baltazar, Z. Hu, A.-T. Chien, S. Kumar, C. L. Henderson, D. M. Collard, E. Reichmanis, Chem. Mater., 24, 4123 (2012).

  • [32] K. Pilgram, M. Zupan, R. Skiles, J. Heterocycl. Chem. 7, 629 (1970).

  • [33] Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, Y. Cao, Macromolecules 37, 6299 (2004).

  • [34] A. Hucke, M. P. Cava, J. Org. Chem. 63, 7413 (1998).

  • [35] J. Krömer, P. Bäuerle, Tetrahedron 57, 3785 (2001).

  • [36] S. Steinberger, Red/NIR-absorbing Oligothiophenes for Organic Solar Cells, PhD thesis, Univ. Ulm (2011).

  • [37] R. Schueppel, K. Schmidt, C. Uhrich, K. Schulze, D. Wynands, J. L. Bredas, E. Brier, E. Reinold, H. B. Bu, P. Bäuerle, B.Männig, M. Pfeiffer, K. Leo, Phys. Rev. B, 77, 085311 (2008).

  • [38] R. N. Adams, Electrochemistry at Solid Electrodes, M. Dekker: New York, 1969.

About the article


Received: 2014-04-01

Accepted: 2014-05-21

Published Online: 2014-10-20



Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.2478/oph-2014-0005. Export Citation

©2014 Simon Steinberger et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in