Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
In This Section

Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines

A. V. Vannikov
    / A. D. Grishina
      / Yu. G. Gorbunova
        / A. Yu. Tsivadze
          Published Online: 2015-08-03 | DOI: https://doi.org/10.1515/oph-2015-0008

          Abstract

          The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.

          Keywords: Photoconductive; nonlinear optical properties of metallophthalocyanines

          References

          • [1] Salvador M., Prauzner J., Köber S., Meerholz K., Turek J.J., Jeong K., Nolte D.D. Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device., Optics Express, 17, 11834 (2009) [Crossref] [Web of Science]

          • [2] Tsujimura S., Kinasahi K., Sakai W., Tsutsumi N. High speed photorefractive response capability in triphenilamine polymerbased composites, Applied Physics Express., 5, 064101-1 (2012) [Crossref]

          • [3] Tay S., Thomas J., Eralp M., Li G., Kippelen B., Marder S.R., Meredith G., Schulzgen A., Peyghambarian N. Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm, Appl. Phys. Letters, 85, 4561 (2004)

          • [4] Calvete M.J.F., Near-infrared absorbing organic materials with nonlinear transmission properties, Int. Rev. Phys. Chem., 31, 319 (2012) [Web of Science] [Crossref]

          • [5] Vannikov A.V., Grishina A.D., Shapiro B.I., Pereshivko L.Ya., Krivenko T., Savelyev V.V., Berendyaev V.I., Rychwalski R.W., Photoelectric, nonlinear optical and photorefractive properties of polyimide doped with J–aggregates of cyanine dye, Chem. Phys., 287, 261 (2003)

          • [6] Vannikov A.V., Grishina A.D., The photorefractive effect in polymeric systems, Russ. Chem. Rev., 72, 471 (2003) [Crossref]

          • [7] Grishina A.D., Pereshivko L.Ya., Tameev A.R., Krivenko T.V., Savelyev V.V., Vannikov A.V., Rychwalski R.W., Fast photorefractive polymer composites based on nanocrystalline J-aggregates of the cyanine dyes, Synthetic Metalls, 144, 113 (2004).

          • [8] Grishina A.D., Shapiro B.I., Pereshivko L.Ya., Krivenko T.V., Savelyev V.V., Vannikov A.V., Rychwalski R.W., Infrared photorefractive composites based on polyimide and cyanine dyes Jaggregates, Polymer Sci., A, 47, 285 (2005)

          • [9] Vannikov A.V., Grishina A.D., Pereshivko L.Ya., Krivenko T., Savelyev V.V., Rychwalski R.W., Infrared photorefractive composites based on polyimide and J-aggregates of cyanine dye, J. Nonlinear Opt. Phys. Mater., 14, 439 (2005). [Crossref]

          • [10] Vannikov A.V., Grishina A.D., Photorefractive polymer composites based on nanosized nonlinear optical chromophores, High Energy Chem., 41, 162 (2007). [Web of Science] [Crossref]

          • [11] Kusyk M.G., A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility, Phys. Rev. Lett., 85, 1218 (2000)

          • [12] Markov R.V., Plekhanov A.I., Rautian S.G., Safonov V.P., Orlova N.A., Shelkovnikov V.V., Dispersion of cubic susceptibility of thin films of pseudoisocyanine J-aggregates as measured by longitudinal scanning. Opt. Spectrosc., 85, 588 (1998)

          • [13] Tsivadze A.Yu., Supramolecular Metal Complex Systems Based on Crown-Substituted Tetrapyrroles, Russ. Chem. Rev., 73, 6 (2004)

          • [14] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Enakieva Yu.Yu., Krivenko T.V., Savel’ev V.V., Tsivadze A.Yu., Infrared photorefractive composites based on supramolecular ensembles of ruthenium (II) tetra-15-crown-5-phthalocyaninate, Doklady Physical Chemistry, 403, 137 (2005)

          • [15] Grishina A.D., Zolotarevsky V.I., Gorbunova Y.G, Pereshivko L.Ya., Enakieva Yu.Yu., Krivenko T.V., Savelyev V.V., Vannikov A.V., Tsivadze A.Yu., The influence of a solvent on the aggregation of rutheniumtetra-15-crown-5-phthalocyaninate, Russ. J. of Physical Chemistry A, 83, 1907 (2004)

          • [16] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Krivenko T.V., Laryushkin A.S., Lapkina L.A., Savelyev V.V., Tsivadze A.Yu., Photoelectric, nonlinear optical and photorefractive properties of composites based on poly(n_vinylcarbazole) and galliumphthalocyaninate. Polymer Sci. Ser. A, 53, 1069 (2011) [Web of Science]

          • [17] Laryushkin A.S., Krivenko T.V., Gorbunova Yu.G., Grishina A.D., Enakieva Yu.Yu., Savel’ev V.V., Vannikov A.V., Tsivadze A.Yu., Photoelectric and photorefractive properties of composites based on poly(vinylcarbazole) and ruthenium(II) tetra-15-crown- 5- phthalocyanine with axially coordinated pyrazine molecules, High Energy Chemistry, 46, 331 (2012) [Web of Science] [Crossref]

          • [18] Grishina A.D., Gorbunova Y.G., Zolotarevsky V.I., Pereshivko L.Ya., Enakieva Yu.Yu., Krivenko T.V., Savelyev V.V., Vannikov A.V., Tsivadze A.Yu., Solvent induced supramolecular assemblies of crown-substituted ruthenium phthalocyaninate: morphology of assemblies and nonlinear optical properties, J. Porphyrins Phthalocyanines, 13, 92 (2009)

          • [19] de la Torre G., Vazquez P., Agullo-Lopez F., Torres T., Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds, Chem. Rev., 104, 3723 (2004)

          • [20] Lapkina L.A., Gorbunova Y.G., Gil D.O., Ivanov V.K., Konstantinov N.Yu., Tsivadze A.Yu., Synthesis, spectral properties, cationinduced dimerization and photochemical stability of tetra-(15- crown-5)-phthalocyaninato indium(III), J. Porphyrins Phthalocyanines, 17, 564 (2013)

          • [21] Enakieva Yu.Yu., Gorbunova Yu.G.,Nefedov S.E., Tsivadze A.Yu., Synthesis and structure of (R4Pc)Ru(TED)2 complex, where (R4Pc) dianion, TED-triethylenediamine, Mendeleev Comm., 14, 193 (2004)

          • [22] Ogawa K., Kobuke Y., Construction and photophysical properties of self-assembled linear porphyrin arrays, J. Photochem. Photobiol. C: Photochem. Rev., 7, 1 (2006) [Crossref]

          • [23] Zhang L., Wang L., Recent research progress on optical limiting property of materials based on phthalocyanine, its derivatives, and carbon nanotubes. J. Mater. Sci., 43, 5692 (2008) [Crossref]

          • [24] Chauke V., Durmuş M., Nyokong T., Photochemistry, photophysics and nonlinear optical parameters of phenoxy and tertbutyl phenoxy substituted indium(III) phthalocyanines, Journal of Photochem. and Photobiol., A: Chem., 192, 179 (2007) [Crossref]

          • [25] Durmuş M., Nyokong T., Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted galliumand indium phthalocyanine derivatives, Tetrahedron, 63, 1385 (2007)

          • [26] Durmuş M., Nyokong T., Synthesis, photophysical and photochemical properties of tetra- and octa-substituted gallium and indium phthalocyanines, Polyhedron, 26, 3323 (2007)

          • [27] Vannikov A.V., Grishina A.D., Gorbunova Yu.G., Enakieva Yu.Yu., Krivenko T.V., Savel’ev V.V., Tsivadze A.Yu. Infrared photorefractive composites based on supramolecular ensembles of ruthenium( II) tetra-15 crown-5-phthalocyaninate, Doklady Physical Chemistry, 403 (part 2), 137 (2005)

          • [28] Enakieva Yu.Yu., Gorbunova Yu.G., Nefedov S.E., Tsivadze A.Yu. Synthesis and structure of the (R4Pc)Ru(TED)2 complex, where R4Pc2− is the tetra-15-crown-5-phthalocyaninate dianion and TED is triethylenediamine, Mendeleev Comm., 14, 193 (2004)

          • [29] Grishina A.D., Gorbunova Yu.G., Pereshivko L.Ya., Nekrasov A.A., Enakieva Yu.Yu., Krivenko T.V., Savel’ev V.V., Vannikov A.V., Tsivadze A.Yu. Photorefractive polymer composites based on ruthenium (II) tetra-15-crown-5-phthalocyanate axially coordinating ethylisonicotinate molecules photosensitive in telecommunication range, Protection of Metals and Physical Chemistry of Surfaces, 45, 535 (2009) [Web of Science]

          • [30] Kippelen B., Peyghambarian N., In Polymers for Photonic Applications II, V. 161, P. 1 (2003).

          • [31] Ostroverkhova O., Moerner W.E., Organic Photorefractives: Mechanisms, Materials, and Applications, Chem. Rev., 104, 3267 (2004) [Crossref]

          • [32] Yu P., Balasubramanian S., Ward T.Z., Chandrasekhar M., Chandrasekhar H.R., Optimisation of photorefractive multiple quantum wells for biomedical imaging, Synth. Met., 155, 406 (2005)

          About the article

          Received: 2014-08-01

          Accepted: 2015-03-27

          Published Online: 2015-08-03



          Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.1515/oph-2015-0008. Export Citation

          ©2015 A. V. Vannikov et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

          Comments (0)

          Please log in or register to comment.
          Log in