Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Research in the Field of Organic Photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences

Pavel A. Troshin
  • Corresponding author
  • Institute for Problems of Chemical Physics of Russian Academy of Sciences, Academician N. N. Semenov Prospect 1, Chernogolovka, Moscow region, 142432, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-20 | DOI: https://doi.org/10.1515/oph-2015-0012


In the present review we highlight the main research activities in the field of organic photonics and photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS). Extensive investigation of optical and electrical properties of π-conjugated organic compounds performed at IPCP RAS since 1960’s resulted in design of many exciting materials representing organic semiconductors, metals and superconductors. Organic Schottky barrier and p/n junction photovoltaic devices constructed at IPCP RAS in 1960’s and 1970’s were among the first examples of reasonably efficient organic solar cells at that time. These early discoveries inspired younger generations of the researchers to continue the work of their mentors and explore the world of organic materials and photonic devices such as molecular photonic switches, organic light emitting diodes, solar cells, photodetectors, photoswitchable organic field-effect transistors and memory elements.

Keywords: IPCP RAS; organic solar cells; organic photovoltaic cells; organic electronics; molecular electronics; molecular switches; photodetectors; field-effect transistors; memory elements; OLEDs


  • Google Scholar

  • [1] H. Letheby, On the production of a blue substance by the electrolysis of sulphate of aniline, J. Chem. Soc. 15, 1862, 161. CrossrefGoogle Scholar

  • [2] Goppelsroeder F., Studien über die Anwendung der Elektrolyse zur Darstellung, zur Veränderung und zur Zerstörung der Farbstoffe, ohne oder in Gegenwart von vegetabilischen oder animalischen Fasern, Die Internationale Elektrotechnische Ausstellung (16-19 Mai 1891, Frankfurt am Main, Deutschland), 1891, 978-981. Google Scholar

  • [3] H. Naarmann, F. Beck, E.G. Kastning, 1964, BASF, DE 1 178 529. Google Scholar

  • [4] H. Naarmann, Structure and Conductivity of Organic Polymers, Angew. Chem. Int. Ed. Engl. 8, 1969, 915. Google Scholar

  • [5] T. Ito, H. Shirakawa, S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution, J. Polym. Sci. Polym. Chem. 12, 1974, 11. CrossrefGoogle Scholar

  • [6] V.V. Korshak, V.I. Kasatochkin, I.P. Kudriavt, K. Usenbaev, A.M. Sladkov, Synthesis and properties of polyacetylene. Doklady Akademii Nauk SSSR, 136, 1961, 1342. Google Scholar

  • [7] E.I. Balabanov, A.A. Berlin, V.P. Parini, V.L. Talrose, E.L. Frankevich, M.I. Cherkashin, Electric conductivity of polymers with conjugate bonds. Doklady Akademii Nauk SSSR, 134, 1960, 1123. Google Scholar

  • [8] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun. 1977, 578. CrossrefGoogle Scholar

  • [9] R. Greene, G.B. Street, L.J. Suter, Superconductivity in Polysulfur Nitride (SN)X, Phys. Rev. Lett. 34, 1975, 577. CrossrefGoogle Scholar

  • [10] F. Wudl, D.Wobschall, E.J. Hufnagel, Electrical Conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system, J. Am. Chem. Soc. 94 (2), 1972, 670. CrossrefGoogle Scholar

  • [11] J. Ferraris, D.O. Cowan, V.V.Walatka, Jr., J.H. Perlstein, Electron transfer in a new highly conducting donor-acceptor complex, J. Am. Chem. Soc. 95 (3), 1973, 948. CrossrefGoogle Scholar

  • [12] D. Jérôme, A.Mazaud, M. Ribault and K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF6, Journal de Physique Lettres 41, 4, 1980, 95. CrossrefGoogle Scholar

  • [13] L.I. Buravov, M.L. Khidekel, I.F. Shchegolev, E.B. Yagubskii, Superconductivity and dielectric constant of highly conductive complexes of tetracyanoquinodimethane (TCQM), JETP Lett. 12, 1970, 99. Google Scholar

  • [14] E.B. Yagubskii, I.F. Shchegolev, V.N. Laukhin, P.A. Kononovich, M.V. Karatsovnik, A.V. Zvarykina, L.I. Buravov, Normalpressure superconductivity in an organic metal (BEDTTTF) 2L3Google Scholar

  • [bis(ethylene-dithiolo)tetrathiofulvalene triiodide], JETP Lett. 39, 1984, 12. Google Scholar

  • [15] R.N. Lyubovskaya, R.B. Lyubovskii, R.P. Shibaeva, M.Z. Aldoshina, L.M. Goldenberg, L.P. Rozenberg, M.L. Khidekel, Y.F. Shulpyakov, Superconductivity in a BEDT-TTF organic conductor with a chloromercurate anion, JETP Lett. 42, 1985, 468. Google Scholar

  • [16] R.P. Shibaeva, E.B. Yagubskii, Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues, Chem. Rev. 104, 2004, 5347. CrossrefGoogle Scholar

  • [17] M. Pope and Charles E. Swenberg, Electronic processes in organic crystals and polymers, New York Oxford 1999 Google Scholar

  • [18] P.M. Borsenberger, V.S. Weiss, M. Dekker, Organic photoreceptors, IMC 1998 Google Scholar

  • [19] H. Meier, Organic semiconductors, Verlag Chemie GmbH 1974 Google Scholar

  • [20] J. Simon, J.J. Andre, Molecular semiconductors. Photoelectrical properties and solar cells, In: J.M. Leen and C.W. Rees (Eds.), Berlin/Heidelberg/New York/Tokyo: Springer-Verlag 1985 Google Scholar

  • [21] N.A. Goryunova, Organic Semiconductors (Organicheskie Poluprovodniki), Moskva, 1968 (in Russian) Google Scholar

  • [22] L.I. Boguslavskiy, A.V. Vannikov, Organic semiconductors and biopolymers (Organicheskie poluprovodniki i biopolimeri), Moskva 1968 (in Russian) Google Scholar

  • [23] A. Dulov, A. Slinkin, Organic Semiconductors. Polymers with conjugated bonds (Organicheskie poluprovodniki. Polimeri s sopryazhennimi svyazyami), Moskva, Nauka 1970 (in Russian) Google Scholar

  • [24] F. Gutman and L. E. Lyons, Organic Semiconductors, (Wiley), New York, 1967. Google Scholar

  • [25] E.L. Frankevich, E.I. Balabanov, New effect of increasing photoconductivity of organic semiconductors in a wear magnetic field, JETP Letters-USSR 1, 1965, 169 Google Scholar

  • [26] E.L. Frankevich, Nature of a new effect of a change in photoconductivity of organic semiconductors in amagnetic field, Soviet Physics JETP-USSR 23, 1966, 814 Google Scholar

  • [27] E.L. Frankevich, B.M. Rumyantsev, Anthracene luminescence quenching by a magnetic field, JETP Letters-USSR 6, 1967, 553 (in Russian) Google Scholar

  • [28] Y.B. Zeldovich, A.L. Buchachenko, E.L. Frankevich, Magnetic and spin effects in chemistry and molecular physics, Uspekhi Fizicheskikh Nauk, 155, 1988, 3 Google Scholar

  • [29] E.J. Fedotova, I.M. Stolovitskii, E.L. Frankevich, Magnetic-field effect on the separated charge generation in photochemical reactions involving chlorophyll A in solutions, Dokladi Akademii Nauk SSSR, 254, 1980, 423 Google Scholar

  • [30] L.I. Paramonova, Y.M. Stolovitsky, A.Y. Shkuropatov, E.L. Frankevich, Photoelectric properties of fucoxanthin layers, Biofizika, 28, 1983, 364 Google Scholar

  • [31] E.L. Frankevich, D.I. Kadyrov, I.A. Sokolik, A.I. Pristupa, V.M. Kobryanskii, N.Y. Zurabyan, On the conductivity mechanism of weakly doped polyacetylene, Physica Status Solidi B, 132, 1985, 283 Google Scholar

  • [32] E.L. Frankevich, M.M. Tribel, I.A. Sokolik, B.B. Kotov, Photoconductivity of charge transfer complex crystals anthracenedimethylpyromellitimide, Physica Status Solidi A, 40, 1977, 655 CrossrefGoogle Scholar

  • [33] D.I. Kadyrov, L.S. Koltsova, I.A. Sokolik, E.L. Frankevich, M.G. Chauser, Mechanism of the photogeneration of current carriers in films of polyphenylacetylene with chloranil, High Energ. Chem. 17, 1983, 56 Google Scholar

  • [34] A.P. Tyutnev, V.P Sichkar, A.V. Vannikov, Electronic processes induced by radiation in organic solid systems, Uspekhi Khimii 50, 1981, 977 Google Scholar

  • [35] A.N. Tikhonov, G.B. Khomutov, E.K. Ruuge, L.A. Blumenfeld, Electron transport control in chloroplasts-effects of photosynthetic control monitored by intrathyllakoid pH, Biochimica et Biophysica Acta, 637, 1981, 321 Google Scholar

  • [36] G.A. Chamberlain, Organic solar cells: A review, Solar cells, 8, 1983, 47. Google Scholar

  • [37] V.A. Benderskii, N.N. Usov, M.I. Fedorov, Quantum yield of the barrier photoeffect in phthalocyanine films, Dokladi Akademii Nauk SSSR, 183, 1968, 1117 (in Russian). Google Scholar

  • [38] N.N. Usov, V.A. Benderskii, Barrier effect in Phtalocyanine films, Sov. Phys. Semicond. USSR 2, 1968, 580. Google Scholar

  • [39] M.I. Fedorov, V.A. Benderskii, Kharakteristiki tonkoplenochnikh photoelementov na osnove ftalotsianina magniya, Physika i Technika Poluprovodnikov 7, 1970, 1403 (in Russian). Google Scholar

  • [40] N.N. Usov, V.A. Benderskii, Photoeffect in metal-free phthalocyanine crystals, Phys. Stat. Sol. 37, 1970, 535. CrossrefGoogle Scholar

  • [41] M.I. Fedorov, V.A. Benderskii, Obrazovanie p-n Perekhoda pri Legirovanii Sloev Ftalotsianina Magniya, Physika Poluprovodnikov 12, 1970, 2007 (in Russian). Google Scholar

  • [42] M.I. Fedorov, V.A. Benderskii, Formation of p-n junctions by doping magnesium phthalocyanine films, Sov. Phys. Semicond. USSR 4, 1971, 1720. Google Scholar

  • [43] V.A. Benderskii, M.I. Alyanov, M.I. Fedorov, L.M. Fedorov, Model organic transformers of light energy, Dok. Akad. Nauk SSSR 239, 1978, 856 (in Russian). Google Scholar

  • [44] C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 1986, 183. CrossrefGoogle Scholar

  • [45] S.M. Aldoshin, O.A. Dyachenko, L.O. Atovmyan, V.I. Minkin, V.A. Bren, G.D. Paluy, Crystalline and molecular structure of photochromic 2-(N-acetyl-N-3-nitrophenylaminomethylene)- 3,3-(2H)-benzoGoogle Scholar

  • [B]-thiophehone and its photoinitiated acylotropic rearrangemenr product, Zeitschrift fur kristallographie 159, 1982, 143. Google Scholar

  • [46] S.M. Aldoshin, Spiropyrans - characteristics of their structure and photochemical properties, Uspekhi khimii 59, 1990, 1144. Google Scholar

  • [47] S.A. Krysanov, M.V. Alfimov, Ultrafast formation of transients in spiropyran photochromism, Chem. Phys. Lett. 91, 1982, 77. CrossrefGoogle Scholar

  • [48] S.A. Krysanov, M.V. Alfimov, Picosecond spectroscopy of trans-thioindigo, Chem. Phys. Lett. 76, 1980, 221. CrossrefGoogle Scholar

  • [49] S.M. Aldoshin, L.A. Nikonova, V.A. Smirnov, G.V. Shilov, N.K. Nagaeva, Structure and photochromic properties of single crystals of spiropyran salts, J. Mol. Struct. 750, 2005, 158. CrossrefGoogle Scholar

  • [50] S.M. Aldoshin, Heading to photoswitchable magnets, J. Photochem. and Photobiol. A-Chemistry 200, 2008, 19. Google Scholar

  • [51] M.V. Alfimov, V.F. Razumov, Silverless photographic process based on the photochemical initiation of phasetransformation of a substance, Dokladi Akademii Nauk SSSR 260, 1981, 1383. Google Scholar

  • [52] M.V. Alfimov, V.F. Razumov, A photographic process based on crystallization induced by photochemical reaction, J. Photograph. Sci. 31, 1983, 217. Google Scholar

  • [53] M.G. Spirin, S.B. Brichkin, V.F. Razumov, Synthesis and stabilization of gold nanoparticles in reverse micelles of aerosol OT and triton X-100, Colloid Journal, 67, 2005, 485. CrossrefGoogle Scholar

  • [54] L.M. Nikolenko, A.V. Ivanchihina, S.B. Brichkin, V.F. Razumov, Ternary AOT/water/hexane systems as "micellar sieves" for cyanine dye J-aggregates, J. Coll. Interface Sci. 332, 2009, 366- 372. CrossrefGoogle Scholar

  • [55] L.M. Nikolenko, V.F. Razumov, Colloidal quantum dots in solar cells, Rus. Chem. Rev. 82, 2013, 429. Google Scholar

  • [56] E.V. Rabenok, M.V. Gapanovich, S.I. Bocharova, Yu. V. Meteleva-Fischer, K.V. Bocharov, G.F. Novikov, Effect of Annealing on the Loss Kinetics of Charge Carriers in CdS Films, J. Renewable Sustainable Energy 5, 2013, 011206. Google Scholar

  • [57] G.F. Novikov, E.V. Rabenok, M.J. Jeng and L.B. Chang, The study of loss kinetics of current carriers in cigs by microwave photoconductivity method, J. Renewable Sustainable Energy 4, 1, 2012, 011604. Google Scholar

  • [58] I.K. Yakushchenko, M.G. Kaplunov, O.N. Efimov, M. Yu. Belov, S.N. Shamaev, Polytriphenylamine derivatives asmaterials for hole transporting layers in electroluminescent devices, Phys. Chem. Chem. Phys. 1, 1999, 1783. CrossrefGoogle Scholar

  • [59] S.L. Nikitenko, S.S. Krasnikova, M.G. Kaplunov, I.K. Yakushchenko, Exciplex electroluminescence spectra of the new organic materials based on zinc complexes of sulphanylamino-substituted ligands, Func. Mater. 19, 2012, 202. Google Scholar

  • [60] M.G. Kaplunov, S.N. Nikitenko, S.S. Krasnikova, Exciplex electroluminescence of the new organic materials for lightemitting diodes, In: Jai Singh (ed.), Organic Light Emitting Devices, Chapter 7, ISBN 978-953-51-0850-4, 232 pages, InTech, November 14, 2012. Google Scholar

  • [61] M.G. Kaplunov, S.S. Krasnikova, I.K. Yakushchenko, S.N. Shamaev, A.P. Pivovarov, O.N. Efimov, O.N. Ermakov, S.A. Stakharny, New organic electroluminescent materials, Mol. Cryst. Liq.Cryst. 426, 2005, 287. CrossrefGoogle Scholar

  • [62] M.E. El-Khouly, O. Ito, P.M. Smith, F. D’Souza, Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems, J. Photochem. Photobiol. C 5, 2004, 79. CrossrefGoogle Scholar

  • [63] D.V. Konarev, I.S. Neretin, Y.L. Slovokhotov, E.I. Yudanova, N.V. Drichko, Y.M. Shul’ga et al., New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins Google Scholar

  • [M(tpp)], in which M = H2, Mn, Co, Cu, Zn, and FeCl, Chem. Eur. J. 7, 2001, 2605. Google Scholar

  • [64] P.A. Troshin, A.S. Peregudov, D. Muhlbacher, R.N. Lyubovskaya, An eflcient Google Scholar

  • [2+3] cycloaddition approach to the synthesis of pyridyl-appended fullerene ligands, Eur. J. Org. Chem. 14, 2005, 3064. Google Scholar

  • [65] M. Prato, M. Maggini, Fulleropyrrolidines: a family of fullfledged fullerene derivatives, Acc. Chem. Res. 31, 1998, 519. CrossrefGoogle Scholar

  • [66] P.A. Troshin, A.S. Peregudov, S.I. Troyanov and R.N. Lyubovskaya, New pyrrolidine and pyrroline derivatives of fullerenes: from the synthesis to the use in light-converting systems, Russ. Chem. Bull., Int. Ed. 57, 2008, 887. CrossrefGoogle Scholar

  • [67] P.A. Troshin, R.N. Lyubovskaya, Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for their practical use, Russ. Chem. Rev. 77(4), 2008, 305. Google Scholar

  • [68] P.A. Troshin, A.S. Peregudov, S.M. Peregudova, R.N. Lyubovskaya, Highly regio- and stereoselective Google Scholar

  • [2+3]cycloadditions of azomethine ylides to Google Scholar

  • [70]fullerene, Eur. J. Org. Chem. 2007, 5861. Google Scholar

  • [69] P.A. Troshin, S.I. Troyanov, G.N. Boiko, R.N. Lyubovskaya, A.N. Lapshin, N.F. Goldshleger, Eflcient Google Scholar

  • [2+3]cycloaddition approach to synthesis of pyridinyl based Google Scholar

  • [60]fullerene ligands, Fuller. Nanot. Carb. Nanostruct. 12, 2004, 435. Google Scholar

  • [70] A.N. Lapshin, V.A. Smirnov, R.N. Lyubovskaya, N.F. Goldshleger, Spectroscopic study of the reaction of cis- 1,3-di(2-pyridyl)Google Scholar

  • [60]fullerenoGoogle Scholar

  • [1,2-c]pyrrolidine and 2-(2- pyridylmethyl)-1,3-di(2-pyridyl)Google Scholar

  • [60]fullerenoGoogle Scholar

  • [1,2-c]pyrrolidine with zinc meso-tetraphenylporphyrinate, Russ. Chem. Bull., Int. Ed. 54, 2005, 2338. Google Scholar

  • [71] I.A. Mochalov, A.N. Lapshin, V.A. Nadtochenko, V.A. Smirnov, N.F. Goldshleger, Photochemical study of the zinc cis- 3-(4-imidazolylphenyl)-1-(pyridin-2-yl)Google Scholar

  • [60]fullerenoGoogle Scholar

  • [1,2- c]pyrrolidine-meso-tetraphenylporphyrinate dyad, Russ. Chem. Bull., Int. Ed. 55, 2006, 1598. Google Scholar

  • [72] D.V. Konarev, S.S. Khasanov, A.B. Kornev, M.A. Faraonov, P.A. Troshin, R.N. Lyubovskaya, Molecular and ionic complexes of pyrrolidinofullerene bearing chelating 3 pyridyl units, Dalton Trans. 40, 2012, 791. CrossrefGoogle Scholar

  • [73] R. Koeppe, P.A. Troshin, A. Fuchsbauer, R.N. Lyubovskaya, N.S. Sariciftci, Photoluminescence studies on the supramolecular interactions between a pyrollidinofullerene and zincphthalocyanine used in organic solar cells, Fuller. Nanotub. Carb. Nanostruct. 14, 2006, 441. CrossrefGoogle Scholar

  • [74] P.A. Troshin, R. Koeppe, A.S. Peregudov, S.M. Peregudova, M. Egginger, R.N. Lyubovskaya, N.S. Sariciftci, Supramolecular association of pyrrolidinofullerenes bearing chelating pyridyl groups and zinc phthalocyanine for organic solar cells, Chem. Mater. 19, 2007, 5363. CrossrefGoogle Scholar

  • [75] R. Koeppe, P.A. Troshin, R.N. Lyubovskaya, N.S. Sariciftci, Complexation of pyrrolidinofullerenes and zincphthalocyanine in a bilayer organic solar cell structure, Appl. Phys. Lett. 87, 2005, 244102. CrossrefGoogle Scholar

  • [76] D.M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev. 31, 2002, 22. CrossrefGoogle Scholar

  • [77] P.A. Troshin, N.S. Sariciftci, Supramolecular Chemistry for Organic Photovoltaics, In: J.W. Steed. and P.A. Gale (eds), Supramolecular Chemistry: From Molecules to Nanomaterials., Volume 5, Chapter 29, pp. 2725-2788, John Wiley & Sons, Ltd., Chichester, UK, 2012. Google Scholar

  • [78] P.A. Troshin, R. Koeppe et. al., unpublished results Google Scholar

  • [79] N. Li, P. Kubis, K. Forberich et al., Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing, Sol. Energ. Mater. Sol. Cells 120, 2014, 701. CrossrefGoogle Scholar

  • [80] T. Ameri, P. Khoram, J. Min, C.J. Brabec, Organic ternary solar cells: a review, Adv. Mater. 25, 2013, 4245. Google Scholar

  • [81] A.C. Mayer, M.F. Toney, S.R. Scully, J. Rivnay, C.J. Brabec, M. Scharber et al., Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells, Adv. Funct. Mater. 19, 2009, 1173. CrossrefGoogle Scholar

  • [82] Ting Xiao, Haihua Xu, Giulia Grancini, Jiangquan Mai, Annamaria Petrozza, U-Ser Jeng et al., Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation, Scientific Reports 4, 2014, 5211. Google Scholar

  • [83] N.C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, C.E. Miller et al., Factors governing intercalation of fullerenes and other small molecules between the side chains of semiconducting polymers used in solar cells, Adv. Energy Mater. 2, 2012, 1208. CrossrefGoogle Scholar

  • [84] N.C. Cates, R. Gysel, Z. Beiley, C.E. Miller, M.F. Toney, M. Heeney et al., Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation, Nano Lett. 9, 2009, 4153. CrossrefGoogle Scholar

  • [85] P.A. Troshin, E.A. Khakina, M. Egginger, A.E. Goryachev, S.I. Troyanov, A. Fuchsbauer et al., Thiophene- and furansubstituted methanofullerenes as novel materials for organic solar cells, ChemSusChem 3, 2010, 356. CrossrefGoogle Scholar

  • [86] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J. Hummelen, 2.5% eflcient organic plastic solar cells, Appl. Phys. Lett. 78, 2001, 841. Google Scholar

  • [87] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch et al., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells, Adv. Funct. Mater., 2004, 14, 1005. CrossrefGoogle Scholar

  • [88] H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.Ch. Lux- Steiner, N.S. Sariciftci, Kelvin probe force microscopy study on conjugated polymer/fullerene bulk-heterojunction organic solar cells, Nano Lett. 5, 2005, 269. CrossrefGoogle Scholar

  • [89] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M.R. Andersson et al., Photoluminescence quenching at a polythiophene/C60 heterojunction, Phys. Rev. B 61, 2000, 12 957. Google Scholar

  • [90] D.E. Markov, C. Tanase, P.W.M. Blom, J. Wildeman, Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives, Phys. Rev. B 72, 2005, 045217. CrossrefGoogle Scholar

  • [91] O.A.Mukhacheva, A.E. Goryachev, O. Usluer, D. Egbe and P. A. Troshin, in preparation Google Scholar

  • [92] P.A. Troshin, H. Hoppe, A.S. Peregudov, M. Egginger, S. Shokhovets, G. Gobsch, N.S. Sariciftci, V.F. Razumov, Google Scholar

  • [70]fullerene-based materials for organic solar cells, Chem- SusChem 4, 2011, 119. Google Scholar

  • [93] P.A. Troshin, O.A. Mukhacheva, O. Usluer, S. Rathgeber, A.E. Goryachev, A.V. Akkuratov et al., Improved photovoltaic performance of the PPV-PPE-type copolymer using optimized fullerene-based counterparts, Adv. Energ. Mater. 3, 2013, 161. Google Scholar

  • [94] P.A. Troshin and N.S. Sariciftci, Organic nanomaterials for efficient bulk heterojunction solar cells, In: T. Torres and G. Bottari (Eds.), Organic Nanomaterials: Synthesis, Characterization, and Device Applications, John Wiley & Sons, Inc., 2013, Hoboken, NJ, USA, Chapter 25, pp. 549-578 Google Scholar

  • [95] L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of eflcient inverted polymer solar cells, Adv. Mater. 21, 2009, 1434. Google Scholar

  • [96] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells, Adv. Funct. Mater. 18, 2008, 1783. CrossrefGoogle Scholar

  • [97] A.J. Moulé, K. Meerholz, Controlling morphology in polymerfullerene mixtures, Adv. Mater. 20, 2008, 240. Google Scholar

  • [98] J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim et al., Processing additives for improved eflciency from bulk– heterojunction solar cells, J. Am. Chem. Soc. 130, 2008, 3619. CrossrefGoogle Scholar

  • [99] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cell, Adv. Funct. Mater. 13, 2003, 85. CrossrefGoogle Scholar

  • [100] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery et al., High-eflciency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4, 2005, 864. Google Scholar

  • [101] V.A. Kostyanovsky, D.K. Susarova, A.S. Peregudov, P.A. Troshin, Polymerizable fullerene-based material for organic solar cells, Thin Solid Films 519, 2011, 4119. Google Scholar

  • [102] J.Y. Mayorova, S.L. Nikitenko, P.A. Troshin, S.M. Peregudova, A.S. Peregudov, M.G. Kaplunov et al., Synthesis and investigation of novel fullerene-based acceptor materials, Mendeleev Commun. 17, 2007, 175. CrossrefGoogle Scholar

  • [103] P.A. Troshin, R. Koeppe, D.K. Susarova, N.V. Polyakova, A.S. Peregudov, V.F. Razumov et al., Trannulenes: a new class of photoactive materials for organic photovoltaic devices, J. Mater. Chem. 19, 2009, 7738. CrossrefGoogle Scholar

  • [104] P.A. Troshin, I.P.Romanova, D.K. Susarova, G.G. Yusupova, A.T. Gubaidullin, A.F. Saifina, The first phosphorous-containing fullerene derivative applied as electron acceptor material in organic solar cells, Mendeleev Communications 20, 2010, 137. CrossrefGoogle Scholar

  • [105] P.A. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Yu. Mayorova, A.E. Goryachev et al., Material solubility-photovoltaic performance relationship in design of novel fullerene derivatives for bulk heterojunction solar cells, Adv. Funct. Mater. 19, 2009, 779. CrossrefGoogle Scholar

  • [106] J.A. Renz, P.A. Troshin, G. Gobsch, V.F. Razumov, H. Hoppe, Fullerene solubility - current density relationship in polymer solar cells, Rapid. Res. Lett., Phys. Stat. Sol. (RRL) 2(6), 2008, 263. CrossrefGoogle Scholar

  • [107] D.K. Susarova, E.A. Khakina, P.A. Troshin, A.E. Goryachev, N.S. Sariciftci, V.F. Razumov et al., Photovoltaic performance of PPE-PPV copolymers: effect of the fullerene component, J. Mater. Chem. 21, 2011, 2356. CrossrefGoogle Scholar

  • [108] P.A. Troshin, D.K. Susarova, E.A. Khakina, A.E. Goryachev, O.V. Borshchev, S.A. Ponomarenko et al., Material solubility and molecular compatibility effects in the design of the fullerene/polymer composites for organic bulk heterojunction solar cells, J. Mater. Chem. 22, 2012, 18433. CrossrefGoogle Scholar

  • [109] C. Kästner, D.K. Susarova, R. Jadhav, D.A.M. Egbe, S. Rathgeber, P.A. Troshin et al., A simple approach for morphology evaluation of polymer-fullerene bulk heterojunctions: an ensemble of different bulk morphologies generated by a variation of fullerene derivatives, J. Mater. Chem. 22, 2012, 15987. CrossrefGoogle Scholar

  • [110] D.K. Susarova, P.A. Troshin, Y.L. Moskvin, S.D. Babenko, V.F. Razumov, Vertical concentration gradients in bulk heterojunction solar cells induced by differential material solubility, Thin Solid Films 519, 2011, 4132. Google Scholar

  • [111] D.K. Susarova, A.E. Goryachev, D.V. Novikov, N.N. Dremova, S.M. Peregudova, P.A. Troshin et al., Material solubility effects in bulk heterojunction solar cells based on the biscyclopropane fullerene adducts and P3HT, Sol. Energ. Mater. Sol. Cells 120, 2014, 30. CrossrefGoogle Scholar

  • [112] V.A. Kostyanovskiy, P.A. Troshin, G. Adam, N.S. Sariciftci, V.F. Razumov, Investigation of poly(cyclopentadithiophenes) as electron donor materials for organic solar cells, Energy Procedia 31C, 2012, 1. CrossrefGoogle Scholar

  • [113] P.A. Troshin, O.A.Mukhacheva, A.E. Goryachev, N.N. Dremova, D. Voylov, C. Ulbricht, Material structure - composite morphology-photovoltaic performance relationship for organic bulk heterojunction solar cells, Chem. Commun. 48, 2012, 9477. CrossrefGoogle Scholar

  • [114] D. Gendron, M. Leclerc, New conjugated polymers for plastic solar cells, Energy Environ. Sci. 4, 2011, 1225. CrossrefGoogle Scholar

  • [115] N. Yeh, P. Yeh, Organic solar cells: Their developments and potentials, Renewable and Sustainable Energy Reviews 21, 2013, 421. Google Scholar

  • [116] H.J. Son, B. Carsten, I.H. Jung, L. Yu., Overcoming eflciency challenges in organic solar cells: rational development of conjugated polymers, Energy Environ. Sci. 5, 2012, 8158. CrossrefGoogle Scholar

  • [117] C.J. Brabec, C.Winder, N.S. Sariciftci, J.C. Hummelen, A. Dhanabalan, P.A. van Hal et al., A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes, Adv. Funct. Mater. 12, 2002, 709. CrossrefGoogle Scholar

  • [118] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger et al., Design rules for donors in bulkheterojunction solar cells - towards 10% energy-conversion efficiency, Adv. Mater., 18, 2006, 789. Google Scholar

  • [119] L.J.A. Koster, V.D. Mihailetchi and P.W.M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lett. 88, 2006, 093511. CrossrefGoogle Scholar

  • [120] M. Lenes, G.J.A.H. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, P.W.M. Blom, Fullerene bisadducts for enhanced open-circuit voltages and eflciencies in polymer solar cells, Adv. Mater. 20, 2008, 2116. Google Scholar

  • [121] G. Zhao, Y. He, Y. Li, 6.5% eflciency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization, Adv. Mater. 22, 2010, 4355. Google Scholar

  • [122] J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li et al., A robust inter-connecting layer for achieving high performance tandem polymer solar cells, Adv. Mater. 20, 2011, 1. Google Scholar

  • [123] J.M. Frost, M.A. Faist, J. Nelson, Energetic disorder in higher fullerene adducts: a quantum chemical and voltammetric study, Adv. Mater. 22, 2010, 4881. Google Scholar

  • [124] M.A. Faist, P.E. Keivanisis, S. Foster, P.H. Wöbkenberg, T.D. Anthopoulos, D.C. Bradley et al., Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with poly(3-hexylthiophene-2,5-diyl), J. Polym. Sci. B Polym. Phys. 49, 2011, 45-51. Google Scholar

  • [125] D.K. Susarova, A.E. Goryachev, P.A. Troshin and V.F. Razumov, Synthesis and photovoltaic performance of various bisadducts of Google Scholar

  • [60]fullerene. EMRS Spring Meeting and Bilateral (EMRS+MRS) Energy Conference, Symposium S (9-14 May 2011, Nice, France). Google Scholar

  • [126] F.B. Kooistra, J. Knol, F. Kastenberg, L.M. Popescu, W.J.H. Verhees, J.M. Kroon et al., Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMOlevel of the acceptor, Org. Lett., 9, 2007, 551. Google Scholar

  • [127] I. Riedel, E. von Hauff, J. Parisi, N. Martin, F. Giacalone, V. Dyakonov, Diphenylmethanofullerenes: new and eflcient acceptors in bulk heterojunction solar cells, Adv. Funct. Mater. 15, 2005, 1979. CrossrefGoogle Scholar

  • [128] H.J. Bolink, E. Coronado, A.F. Aliaga, M. Lenes, A.L. Rosa, S. Filippone et al., Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length, J. Mater. Chem. 21, 2010, 1382. Google Scholar

  • [129] K.Matsumoto, K. Hashimoto, M. Kamo, Y. Uetani, S. Hayase, T. Itoh et al., Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell, J. Mater. Chem. 20, 2010, 9226. CrossrefGoogle Scholar

  • [130] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshin et. al., Chem. Comm. 2014, submitted Google Scholar

  • [131] A.V. Mumyatov, O.A. Mukhacheva, D.K. Susarova, P.A. Troshin et. al., Sol. Energy Mater. Sol. Cells, 2014, submitted Google Scholar

  • [132] A.V. Mumyatov, O.A. Mukhacheva, F.A. Prudnov, D.K. Susarova, P.A. Troshin et. al., J. Mater. Chem C., 2014, submitted Google Scholar

  • [133] M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen and F.C. Krebs, Stability of Polymer Solar Cells, Adv. Mater., 24, 2012, 580. Google Scholar

  • [134] R. Po, A. Bernardi, A. Calabrese, C. Carbonera, G. Corso and A. Pellegrino, From lab to fab: how must the polymer solar cell materials design change? - an industrial perspective, Energy Environ. Sci. 7, 2014, 925. CrossrefGoogle Scholar

  • [135] J. Uk Lee, J.W. Jung, J.W. Jo and W.H. Jo, Degradation and stability of polymer-based solar cells, J. Mater. Chem. 22, 2012, 24265. CrossrefGoogle Scholar

  • [136] N. Blouin, A. Michaud and M. Leclerc, A low-bandgap poly(2,7- carbazole) derivative for use in high-performance solar cells, Adv. Mater. 19, 2007, 2295. Google Scholar

  • [137] C.H. Peters, I.T.S. Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc and M.D. McGehee, High eflciency polymer solar cells with long operating lifetimes, Adv. Energy Mater. 1, 2011, 491. CrossrefGoogle Scholar

  • [138] T. Ameri, G. Dennler, C. Lungenschmied and C.J. Brabec, Organic tandem solar cells: A review, Energy Environ. Sci. 2, 2009, 347. CrossrefGoogle Scholar

  • [139] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon et al., Bulk heterojunction solar cells with internal quantum eflciency approaching 100%, Nature Photonics 3, 2009, 297. CrossrefGoogle Scholar

  • [140] J.H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao et al., Improved High-Eflciency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer, J. Am. Chem. Soc., 2011, 133, 8416. Google Scholar

  • [141] G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie et al., Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode, Organic Electronics 13, 2012, 2733. CrossrefGoogle Scholar

  • [142] Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu, L. Chen et al., Simultaneous enhancement of open-circuit voltage, shortcircuit current density, and fill factor in polymer solar cells, Adv. Mater. 23, 2011, 4636. Google Scholar

  • [143] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, Toward a rational design of poly(2,7-carbazole) derivatives for solar sells, J. Am. Chem. Soc. 130, 2008, 732. CrossrefGoogle Scholar

  • [144] T. Umeyama, Y. Watanabe, E. Douvogianni, H. Imahori, Effect of fluorine substitution on photovoltaic properties of benzothiadiazole-carbazole alternating copolymers, J. Phys. Chem. C 117, 2013, 21148 CrossrefGoogle Scholar

  • [145] W. Zhao, W. Cai, R. Xu, W. Yang, X. Gong, H. Wu et al., Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole, Polymer 51, 2010, 3196. CrossrefGoogle Scholar

  • [146] E. Zhou, M. Nakamura, T. Nishizawa, Y. Zhang, Q. Wei, K. Tajima et al., Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithienoGoogle Scholar

  • [3,2- b:2’,3’-d]pyrrole, Macromolecules 41, 2008, 8302. Google Scholar

  • [147] A.V. Akkuratov, D.K. Susarova, O. Kozlov, D.V. Novikov, Y.L. Moskvin, L.A. Frolova, A.V. Chernyak, M.S. Pchenitchnikov, P.A. Troshin, Design of (X-DADAD)n type copolymers with improved optoelectronic properties for bulk heterojunction organic solar cells. Chem. Mater. 2014, submitted Google Scholar

  • [148] N. Banerji, E. Gagnon, P.Y. Morgantini, S. Valouch, A.R. Mohebbi, J.H. Seo et al., Breaking down the problem: optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks, J. Phys. Chem. C 116, 2012, 11456. CrossrefGoogle Scholar

  • [149] X. Liu, Y. Sun, L.A. Perez, W. Wen, M.F. Toney, A.J. Heeger et al., Narrow-band-gap conjugated chromophores with extendedmolecular lengths, J. Am. Chem. Soc. 134, 2012, 20609. CrossrefGoogle Scholar

  • [150] A.V. Akkuratov, D.K. Susarova, D.V. Novikov, D.V. Anokhin, Y.L. Moskvin, A.V. Chernyak, F.A. Prudnov, S.D. Babenko and P.A. Troshin, Strong effect of the positioning of solubilizing alkyl side chains on optoelectronic and photovoltaic properties of TTBTBTT-based conjugated polymers, J. Mater. Chem. C. 2, 2014, submitted. Google Scholar

  • [151] C. Krohnke, Polymer stabilization, In: in Encyclopedia ofMaterials: Science and Technology, Pergamon, 2001, p. 7507. Google Scholar

  • [152] S.S. Choi, J.H. Jang, Analysis of UV absorbers and stabilizers in polypropylene by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Polymer Testing 30, 2011, 673. CrossrefGoogle Scholar

  • [153] P. Klán, J. Wirz, Photochemistry of Organic Compounds: From Concepts to Practice.Wiley-Blackwell, Germany, 2009, p. 563. Google Scholar

  • [154] A. Albini, M. Fagnoni, Photochemically-Generated Intermediates in Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, Germany 2013, p. 380. Google Scholar

  • [155] M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH Verlag GmbH & Co. KGaA, New York 1994, p. 357. Google Scholar

  • [156] A.A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, V. Dyakonov, Reversible and irreversible interactions of poly(3- hexylthiophene) with oxygen studied by spin-sensitive methods, J. Phys. Chem. B. 115, 2011, 13513. CrossrefGoogle Scholar

  • [157] A. Tournebize, P.O. Bussière, P. Wong-Wah-Chung, S. Thérias, A. Rivaton, J.L. Gardette et al., Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells, Adv. Energy Mater. 3, 2013, 478. CrossrefGoogle Scholar

  • [158] M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N. Lemaitre, Light-induced degradation of the P3HT-based solar cells active layer, Solar Energy Mater. Solar Cells 95, 2011, 1315. CrossrefGoogle Scholar

  • [159] A. Tournebize, A. Rivaton, J.L. Gardette, C. Lombard, B.P. Donat, S. Beaupré et al., How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell eflciency and then stabilize it, Adv. Energy Mater. 4, 2014, 1301530. Google Scholar

  • [160] P.A. Troshin, D.K. Susarova, N.P. Piven, E.D. Levchenkova, K.V. Lizgina, Y.L. Moskvin et al., 5th International Symphosium for Polymer Electronics, TPE12 (22-24 May 2012, Rudolstadt, Germany), http://nanorgasol.univpau. fr/Annonces/TPE12_2nd{%}20-09.02.12.pdf Google Scholar

  • [161] E.D. Levchenkova, D.K. Susarova, N.P. Piven, S.D. Babenko, P.A. Troshin, A systematic study of the operational stability of conjugated polymers and organic solar cells made thereof, ICONO/LAT 2013 (June 18-22, 2013, Moscow, Russia), http://www.phys.msu.ru/rus/research/conferences/ICONOLAT- 2013-program.pdf Google Scholar

  • [162] L.A. Frolova, N.P. Piven, D.K. Susarova, A.V. Akkuratov, S.D. Babenko, P.A. Troshin, Dark ESR spectroscopy for monitoring photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells, Chem. Comm., 2014, submitted Google Scholar

  • [163] P.A. Troshin, D.K. Susarova, Y.L. Moskvin, I.E. Kuznetsov, S.A. Ponomarenko, E.N.Myshkovskaya et al., A simple approach to control the quality of conjugated polymers designed for photovoltaic applications, Adv. Funct. Mater. 20, 2010, 4351. CrossrefGoogle Scholar

  • [164] D.K. Susarova, N.P. Piven, A.V. Akkuratov, L.F. Frolova, M.S. Polinskaya, S.A. Ponomarenko, S.D. Babenko, P.A. Troshin, ESR spectroscopy as a powerful technique for controlling the quality of conjugated polymers designed for photovoltaic applications, Chem. Comm., 2014, submitted Google Scholar

  • [165] T. Xu, L. Yu, How to design low bandgap polymers for highly eflcient organic solar cells, Materials Today 17, 2014, 11. CrossrefGoogle Scholar

  • [166] L. Ye, S. Zhang, L. Huo, M. Zhang, J. Hou, Molecular design toward highly eflcient photovoltaic polymers based on twodimensional conjugated benzodithiophene, Acc. Chem. Res. 2014, 47, 1595. Google Scholar

  • [167] D.K. Susarova, A.S. Peregudov, S.M. Peregudova, P.A. Troshin, New lowmolecular weight electroluminescentmaterials for efficient green organic light emitting diodes (OLEDs), Mendeleev Commun. 24, 2014, 88. CrossrefGoogle Scholar

  • [168] D.K. Susarova, D.V. Novikov, P.A. Troshin, Organic light emitting diodes with solution processible organic bulk heterojunction electroluminescent layer, Mendeleev Commun. 24, 2014,85. CrossrefGoogle Scholar

  • [169] I.O. Balashova, J.Y. Mayorova, P.A. Troshin, R.N. Lyubovskaya, I.K. Yakushchenko, M.G. Kaplunov, Color tuning in OLED devices based on new perylene derivatives, Mol. Cryst. Liq. Cryst. 467, 2007, 295. CrossrefGoogle Scholar

  • [170] J.Y. Mayorova, P.A. Troshin, A.S. Peregudov, S.M. Peregudova, M.G. Kaplunov, R.N. Lyubovskaya, Highly soluble perylene dye: tetrabenzyl ester of 3,4,9,10-perylenetetracarboxylic acid, Mendeleev Commun. 17, 2007, 156. Google Scholar

  • [171] A. Fuchsbauer, O.A. Troshina, P.A. Troshin, R. Koeppe, R.N. Lyubovskaya, N.S. Sariciftci, Luminescent Tags on Fullerenes: Eu3+. Complexes with Pendant Fullerenes, Adv. Funct. Mater. 18, 2008, 2808. Google Scholar

  • [172] V.A. Kostyanovsky, D.K. Susarova, G. Adam, R.N. Lyubovskaya, P.A. Troshin, A novel cyclopentadithiophene-fluorene copolymer for organic solar cells and light emitting diodes, Mendeleev Commun. 23, 2013, 26. CrossrefGoogle Scholar

  • [173] I.V. Klimovich, L.I. Leshanskaya, S.I. Troyanov, D.V. Anokhin, D.V. Novikov, P.A. Troshin et al., Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics, J. Mater. Chem. C 2, 2014, 7621. Google Scholar

  • [174] D.V. Anokhin, L.I. Leshanskaya, A.A. Piryazev, D.K. Susarova, N.N. Dremova, P.A. Troshin et al., Towards understanding the behavior of indigo thin films in organic field-effect transistors: a template effect of the aliphatic hydrocarbon dielectric on the crystal structure and electrical performance of the semiconductor, Chem. Commun. 50, 2014, 7639. CrossrefGoogle Scholar

  • [175] M. Irimia-Vladu, E.D. Głowacki, P.A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova et al., Indigo - a natural pigment for high performance ambipolar organic field effect transistors and circuits, Adv. Mater. 24, 2012, 375. Google Scholar

  • [176] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwödiauer et al., Sustainable organic field effect transistors, Organic Electronics 11, 2010, 1974. CrossrefGoogle Scholar

  • [177] M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger et al., Biocompatible and biodegradable materials for organic field effect transistors, Adv. Funct. Mater. 2010, 20, 4069. CrossrefGoogle Scholar

  • [178] A.V.Mumyatov, L.I. Leshanskaya, D.V. Anokhin, N.N. Dremova, P.A. Troshin, Organic field-effect transistors based on disubstituted perylene diimides: effect of the alkyl chains on the device performance, Mendeleev Commun. 24, 2014, 306. CrossrefGoogle Scholar

  • [179] E.A. Kleymyuk, P.A. Troshin, Yu. N. Luponosov, E.A. Khakina, Yu. L. Moskvin, S.M. Peregudova et al., Three dimensional quater- and quinquethiophenesilanes as promising electron donormaterials for bulk heterojunction photovoltaic cells and photodetectors, Energy Environ. Sci. 3, 2010, 1941. CrossrefGoogle Scholar

  • [180] D.K. Susarova, P.A. Troshin, D. Höglinger, R. Koeppe, S.D. Babenko, R.N. Lyubovskaya et al., An effect of a donoracceptor complex formation on a performance of evaporated small molecular organic photovol taic cells, Sol. EnergyMater. Sol. Cells 94, 2010, 803. CrossrefGoogle Scholar

  • [181] P.A. Troshin, S.A. Ponomarenko, Y.N. Luponosov, E.A. Khakina, M. Egginger, T. Meyer-Friedrichsen et al., Eflcient solutionprocessible organic solar cells using quaterthiophene-based multipods as electron donormaterials, Sol. EnergyMater. Sol. Cells 94, 2010, 2064. CrossrefGoogle Scholar

  • [182] L.A. Frolova, D.K. Susarova, N.A. Sanina, P.A. Troshin and Sergey M. Aldoshin, Photoswitchable organic field effect transistors and memory elements comprising interfacial photochromic layer, Chem. Comm., 2014, submitted Google Scholar

About the article

Received: 2015-10-08

Accepted: 2015-02-06

Published Online: 2015-08-20

Citation Information: Organic Photonics and Photovoltaics, Volume 3, Issue 1, ISSN (Online) 2299-3177, DOI: https://doi.org/10.1515/oph-2015-0012.

Export Citation

© 2015 P. A. Troshin. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in