Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organic Photonics and Photovoltaics

Editor-in-Chief: Facchetti, Antonio

Ed. by Ponomarenko, Sergei

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-3177
See all formats and pricing
More options …

Plausible role of nanoparticle contamination in the synthesis and properties of organic electronic materials

Valentine P. Ananikov
  • Corresponding author
  • N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/oph-2016-0008

Abstract

Traceless transition metal catalysis (Pd, Ni, Cu, etc.) is very difficult to achieve. Metal contamination in the synthesized products is unavoidable and the most important questions are: How to control metal impurities? What amount of metal impurities can be tolerated? What is the influence of metal impurities? In this brief review, the plausible origins of nanoparticle contamination are discussed in the framework of catalytic synthesis of organic electronic materials. Key factors responsible for increasing the probability of contamination are considered from the point of view of catalytic reaction mechanisms. The purity of the catalyst may greatly affect the molecular weight of a polymer, reaction yield, selectivity and several other parameters. Metal contamination in the final polymeric products may induce some changes in the electric conductivity, charge transport properties, photovoltaic performance and other important parameters.

Keywords: catalysis; nanoparticles; cross-coupling; contamination; organic synthesis; organic electronics; polymers

References

  • [1] (a) R. P. Ortiz, A. Facchetti and T. J. Marks, Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chem. Rev., 110, 2010, 205–239. (b) H. Usta, A. Facchetti and T. J. Marks, N-Channel Semiconductor Materials Design for Organic Complementary Circuits. Acc. Chem. Res., 44, 2011, 501–510. (c) C. Joachim, J. K. Gimzewski and A. Aviram, Electronics Using Hybrid-Molecular and Mono-Molecular Devices. Nature, 408, 2000, 541–548. (d) A. Coskun, J. M. Spruell, G. Barin, W. R. Dichtel, A. H. Flood, Y. Y. Botros and J. F. Stoddart, High Hopes: Can Molecular Electronics Realise Its Potential? Chem. Soc. Rev., 41, 2012, 4827–4859. (e) J. M. Tour, Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res., 33, 2000, 791–804. (f) R. M. Owens and G. G. Malliaras, Organic Electronics at the Interface with Biology. MRS Bulletin, 35, 2010, 449–456. (g) E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom and D. M. de Leeuw, Bottom-up Organic Integrated Circuits. Nature, 455, 2008, 956–959. (h) S. G. J. Mathijssen, E. C. P. Smits, P. A. van Hal, H. J. Wondergem, S. A. Ponomarenko, A. Moser, R. Resel, P. A. Bobbert, M. Kemerink, R. A. J. Janssen and D. M. de Leeuw, Monolayer Coverage and Channel Length Set the Mobility in Self-Assembled Monolayer Field-Effect Transistors. Nature Nanotechnology, 4, 2009, 674–680. (i) A. Facchetti, π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater., 23, 2011, 733–758. (j) S. R. Forrest, The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature, 428, 2004, 911–918. (k) M. Ratner, A Brief History of Molecular Electronics. Nature Nanotechnology, 8, 2013, 378–381. (l) N. Zhou, A. S. Dudnik, T. I. N. G. Li, E. F. Manley, T. J. Aldrich, P. Guo, H.-C. Liao, Z. Chen, L. X. Chen, R. P. H. Chang, A. Facchetti, M. Olvera de la Cruz and T. J. Marks, All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. J. Am. Chem. Soc., 138, 2016, 1240– 1251. Google Scholar

  • [2] (a) A. Suzuki, Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C-C Bonds (Nobel Lecture). Angew. Chem. Int. Ed., 50, 2011, 6722–6737. (b) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot and V. Snieckus, Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed., 51, 2012, 5062–5085. (c) F. Monnier and M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions. Angew. Chem. Int. Ed., 48, 2009, 6954–6971. (d) R. Chinchilla and C. Nájera, Recent advances in Sonogashira reactions. Chem. Soc. Rev., 40, 2011, 5084–5121. (e) J.-P. Corbet and G. Mignani, Selected Patented Cross-Coupling Reaction Technologies. Chem. Rev., 106, 2006, 2651–2710. (f) I. P. Beletskaya and V. P. Ananikov, Transition-Metal-Catalyzed C-S, C-Se, and C-Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev., 111, 2011, 1596–1636. (g) A. Molnár, Eflcient, Selective, and Recyclable Palladium Catalysts in Carbon-Carbon Coupling Reactions. Chem. Rev. 111, 2011, 2251–2320. Google Scholar

  • [3] V.P. Ananikov, Nickel: The “Spirited Horse” of Transition Metal Catalysis. ACS Catal., 5, 2015, 1964 - 1971. Web of ScienceCrossrefGoogle Scholar

  • [4] V. P. Ananikov, L. L. Khemchyan, Y. V. Ivanova, V. I. Bukhtiyarov, A. M. Sorokin, I. P. Prosvirin, S. Z. Vatsadze, A. V. Medved’ko, V. N. Nuriev, A. D. Dilman, V. V. Levin, I. V. Koptyug, K. V. Kovtunov, V. V. Zhivonitko, V. A. Likholobov, A. V. Romanenko, P. A. Simonov, V. G. Nenajdenko, O. I. Shmatova, V. M. Muzalevskiy, M. S. Nechaev, A. F. Asachenko, O. S. Morozov, P. B. Dzhevakov, S. N. Osipov, D. V. Vorobyeva, M. A. Topchiy, M. A. Zotova, S. A. Ponomarenko, O. V. Borshchev, Y. N. Luponosov, A. A. Rempel, A. A. Valeeva, A. Y. Stakheev, O. V. Turova, I. S. Mashkovsky, S. V. Sysolyatin, V. V. Malykhin, G. A. Bukhtiyarova, A. O. Terent’ev and I. B. Krylov, Development of New Methods in Modern Selective Organic Synthesis: Preparation of Functionalized Molecules with Atomic Precision. Russ. Chem. Rev., 83, 2014, 885–985. CrossrefGoogle Scholar

  • [5] V.P.Ananikov, X.Liu, U.Schneider, Catalysis to Build Molecular Complexity with Atomic Precision. Chem. Asian J., 11, 2016, 328–329. Web of ScienceCrossrefGoogle Scholar

  • [6] S. Xu, E. H. Kim, A. Wei and E. Negishi, Pd- and Ni-Catalyzed Cross-Coupling Reactions in the Synthesis of Organic Electronic Materials. Science and Technology of Advanced Materials, 15, 2014, 044201. (doi: 10.1088/1468-6996/15/4/044201) CrossrefGoogle Scholar

  • [7] Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev., 109, 2009, 5868–5923. Web of ScienceCrossrefGoogle Scholar

  • [8] B. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Stille Polycondensation for Synthesis of Functional Materials. Chem. Rev., 111, 2011, 1493–1528. Web of ScienceCrossrefGoogle Scholar

  • [9] This work was presented as an invited lecture at the 3rd International Fall School on Organic Electronics IFSOE-2016 [M. Petrov, R. Pichugov, First International School on Organic Electronics in Russia (IFSOE 2014), Org. Photonics Photovolt. 3, 2015, 145]. Google Scholar

  • [10] Diederich, F.; Stang, P. J., Eds. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004. Google Scholar

  • [11] Beletskaya, I.P.; Cheprakov, A.V. in The Mizoroki-Heck Reaction, Oestreich, M., Ed.; John Wiley and Sons: Chichester, 2009. Google Scholar

  • [12] Surry, D.S.; Buchwald, S.L. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination. Angew. Chem. Int. Ed. 47, 2008, 6338-6361. CrossrefGoogle Scholar

  • [13] Beller, M. Preface for the themed issue of Chemical Society Reviews. Chem. Soc. Rev. 40, 2011, 4891-4892. Web of ScienceCrossrefGoogle Scholar

  • [14] A.S. Kashin and V. P. Ananikov, Catalytic C-C and C-Heteroatom Bond Formation Reactions: In Situ Generated or Preformed Catalysts? Complicated Mechanistic Picture Behind Well- Known Experimental Procedures. J. Org. Chem., 78, 2013, 11117-11125. CrossrefWeb of ScienceGoogle Scholar

  • [15] (a) A.J. Reay, I.J.S. Fairlamb, Catalytic C–H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis. Chemical Communications, 51, 2015, 16289–16307. (b) Phan, N. Y. S.; Van Der Sluys, M.; Jones, C. W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Adv. Syn. Catal. 348, 2006, 609– 679. (c) Deraedt, C.; Astruc, D. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. Acc. Chem. Res. 47, 2014, 494–503. (d) D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 2005, 7852–7872. (e) Trzeciak, A.; Ziolkowski, J. J. Monomolecular, nanosized and heterogenized palladium catalysts for the Heck reaction. Coord. Chem. Rev., 251, 2007, 1281 – 1293. (f) Y.S. Panova, A.S. Kashin, M.G. Vorobev, E.S. Degtyareva, V.P. Ananikov, Nature of the Copper- Oxide-Mediated C-S Cross-Coupling Reaction: Leaching of Catalytically Active Species from the Metal Oxide Surface. ACS Catal., 6, 2016, 3637–3643. (g) Hübner, S.; de Vries, J. G.; Farina, V. Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts? Adv. Synth. Catal. 358, 2016, 3 – 25. Google Scholar

  • [16] V. P. Ananikov and I. P. Beletskaya, Toward the Ideal Catalyst: From Atomic Centers to a "Cocktail" of Catalysts. Organometallics, 31, 2012, 1595-1604. CrossrefWeb of ScienceGoogle Scholar

  • [17] (a) Tessin, U.I.; Bantreil, X.; Songis, O.; Cazin, C.S.J., Highly Active [Pd(μ-Cl)Cl(NHC)]2 Complexes in the Mizoroki–Heck Reaction. Eur. J. Inorg. Chem. 2013, 2007-2010. (b) Yamada, Y.M.A.; Sarkar, S.M.; Uozumi, Y., Self-Assembled Poly(imidazole-palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels. J. Am. Chem.Soc. 134, 2012, 3190-3198. (c) Wong, S.M.; So, C.M.; Chung, K.H.; Lau, C.P.; Kwong, F.Y., An Eflcient Class of P,N-Type “PhMezole-phos” Ligands: Applications in Palladium-Catalyzed Suzuki Coupling of Aryl Chlorides. Eur. J. Org. Chem. 2012, 4172-4177. (d) Schaarschmidt, D.; Lang, H., P,O-Ferrocenes in Suzuki-Miyaura C,C Couplings. ACS Catal. 1, 2011, 411-416. (e) Zaborova, E.; Deschamp, J.; Guieu, S.; Blériot, Y.; Poli, G.; Ménand, M.; Madec, D.; Prestat, J.; Sollogoub, M. Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki- Miyaura cross-coupling . Chem. Commun. 47, 2011, 9206- 9208. (f) Monnereau, L.; Sémeril, D.; Matt, D.; Toupet, L., Cavity-Shaped Ligands: Calix[4]arene-Based Monophosphanes for Fast Suzuki–Miyaura Cross-Coupling. Chem. Eur. J. 16, 2010, 9237-9247. (g) Fihri, A.; Luart, D.; Len, C.; Solhy, A.; Chevrin, C.; Polshettiwar, V., Suzuki-Miyaura crosscoupling coupling reactions with low catalyst loading: a green and sustainable protocol in pure water. Dalton Trans. 40, 2011, 3116. (h) Doucet, H.; Santelli, M. cis,cis,cis-1,2,3,4- Tetrakis(diphenylphosphinomethyl)cyclopentane: Tedicyp, an Eflcient Ligand in Palladium-Catalysed Reactions . Synlett 2006, 2001-2015. (i) Diallo, A.K.; Ornelas, C.; Salmon, L.; Aranzaes, J.R.; Astruc, D. "Homeopathic" catalytic activity and atom-leaching mechanism in Miyaura-Suzuki reactions under ambient conditions with precise dendrimer-stabilized Pd nanoparticles. Angew. Chem. Int. Ed., 46, 2007, 8644-8648. (j) A. Leyva-Pérez, J. Oliver-Meseguer, P. Rubio-Marqués, A. Corma, Water-stabilized three- and four-atom palladium clusters as highly active catalytic species in ligand-free C-C crosscoupling reactions. Angew. Chem. Int. Ed. 52, 2013, 11554– 11559. Google Scholar

  • [18] S. S. Zalesskiy and V. P. Ananikov, Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis. Organometallics, 31, 2012, 2302-2309. CrossrefWeb of ScienceGoogle Scholar

  • [19] F. C. Krebs, R. B. Nyberg and M. Jřrgensen, Influence of Residual Catalyst on the Properties of Conjugated Polyphenylenevinylene Materials:? Palladium Nanoparticles and Poor Electrical Performance. Chem. Mater., 16, 2004, 1313–1318. CrossrefGoogle Scholar

  • [20] K. T. Nielsen, K. Bechgaard and F. C. Krebs, Removal of Palladium Nanoparticles from Polymer Materials. Macromolecules, 38, 2005, 658–659. CrossrefGoogle Scholar

  • [21] D.K. Susarova, Y. L. Moskvin, I. E. Kuznetsov, S. A. Ponomarenko, E. N. Myshkovskaya, K. A. Zakharcheva, A. A. Balakai, S. D. Babenko, V. F. Razumov, Impedance Measurements as a Simple Tool to Control the Quality of Conjugated Polymers Designed for Photovoltaic Applications. Adv. Funct. Mater. 20, 2010, 4351-4357. Web of ScienceGoogle Scholar

  • [22] (a) J. A. Carr and S. Chaudhary, The Identification, Characterization and Mitigation of Defect States in Organic Photovoltaic Devices: A Review and Outlook. Energy Environ. Sci., 6, 2013, 3414–3438. (b) A. E. Fernandes, A. Dirani, C. d’Haese, G. Deumer, W. Guo, P. Hensenne, F. Nahra, X. Laloyaux, V. Haufroid, B. Nysten, O. Riant and A. M. Jonas, Thicker Is Better? Synthesis and Evaluation of Well-Defined Polymer Brushes with Controllable Catalytic Loadings. Chem. Eur. J., 18, 2012, 16226–16233. (c) N. Grossiord, J. M. Kroon, R. Andriessen and P. W. M. Blom, Degradation Mechanisms in Organic Photovoltaic Devices. Organic Electronics, 13, 2012, 432–456. Google Scholar

  • [23] L. Li, Z. Cai, Q. Wu, W.-Y. Lo, N. Zhang, L. X. Chen and L. Yu, Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. J. Am. Chem. Soc., 138, 2016, 7681–7686. Web of ScienceCrossrefGoogle Scholar

  • [24] M. P. Nikiforov, B. Lai, W. Chen, S. Chen, R. D. Schaller, J. Strzalka, J. Maser and S. B. Darling, Detection and Role of Trace Impurities in High-Performance Organic Solar Cells. Energy Environ. Sci., 6, 2013, 1513–1520. Web of ScienceCrossrefGoogle Scholar

  • [25] N. Camaioni, F. Tinti, L. Franco, M. Fabris, A. Toffoletti, M. Ruzzi, L. Montanari, L. Bonoldi, A. Pellegrino, A. Calabrese and R. Po, Effect of Residual Catalyst on Solar Cells Made of a Fluorene-Thiophene-Benzothiadiazole Copolymer as Electron- Donor: A Combined Electrical and Photophysical Study Organic Electronics, 13, 2012, 550–559. Google Scholar

  • [26] C. Bracher, H. Yi, N. W. Scarratt, R. Masters, A. J. Pearson, C. Rodenburg, A. Iraqi and D. G. Lidzey, The Effect of Residual Palladium Catalyst on the Performance and Stability of PCDTBT:PC70BM Organic Solar Cells. Organic Electronics, 27, 2015, 266–273. CrossrefWeb of ScienceGoogle Scholar

  • [27] Ö. Usluer, M. Abbas, G. Wantz, L. Vignau, L. Hirsch, E. Grana, C. Brochon, E. Cloutet and G. Hadziioannou, Metal Residues in Semiconducting Polymers: Impact on the Performance of Organic Electronic Devices. ACS Macro Lett., 3, 2014, 1134– 1138. Google Scholar

  • [28] J. H. Bannock, N. D. Treat, M. Chabinyc, N. Stingelin, M. Heeney and J. C. de Mello, The Influence of Polymer Purification on the Eflciency of poly(3-Hexylthiophene):fullerene Organic Solar Cells. Scientific Reports, 6, 2016, 23651. Google Scholar

  • [29] (a) C. K. Lo and J. R. Reynolds, Structural and Morphological Effects of Alkyl Side Chains on Flanking Thiophenes of Diketopyrrolopyrrole Polymers for Organic Photovoltaic Devices. Polymer, 99, 2016, 741–747. (b) M. Helgesen, J.E. Carlé, G.A. dos Reis Benatto, R.R. Sřndergaard, M. Jřrgensen, E. Bundgaard and F.C. Krebs, Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands. Adv. Energy Mater. 5, 2015, 1401996. Google Scholar

  • [30] J. Kuwabara, T. Yasuda, N. Takase and T. Kanbara, Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics. ACS Appl. Mater. Interfaces, 8, 2016, 1752–1758. Web of ScienceCrossrefGoogle Scholar

  • [31] A. Katsouras, N. Gasparini, C. Koulogiannis, M. Spanos, T. Ameri, C. J. Brabec, C. L. Chochos and A. Avgeropoulos, Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance. Macromol. Rapid Commun., 36, 2015, 1778–1797. CrossrefWeb of ScienceGoogle Scholar

  • [32] W. Li, L. Yang, J. R. Tumbleston, L. Yan, H. Ade and W. You, Controlling Molecular Weight of a High Eflciency Donor-Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Adv. Mater., 26, 2014, 4456–4462. CrossrefGoogle Scholar

  • [33] Guideline on the specification limits for residues of metal catalysts, The European Medicines Agency, http://www.emea. europa.eu Google Scholar

  • [34] S.-Y. Liu, H.-Y. Li, M.-M. Shi, H. Jiang, X.-L. Hu, W.-Q. Li, L. Fu and H.-Z. Chen, Pd/C as a Clean and Effective Heterogeneous Catalyst for C–C Couplings toward Highly Pure Semiconducting Polymers. Macromolecules, 45, 2012, 9004–9009. CrossrefWeb of ScienceGoogle Scholar

  • [35] K.S. Egorova and V. P. Ananikov, Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew. Chem. Int. Ed., 55, 2016, 12150– 12162. CrossrefWeb of ScienceGoogle Scholar

  • [36] M. Irimia-Vladu, “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future. Chem. Soc. Rev., 43, 2013, 588–610. Web of ScienceGoogle Scholar

  • [37] M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer and N. S. Sariciftci, Green and Biodegradable Electronics. Materials Today, 15, 2012, 340–346. CrossrefWeb of ScienceGoogle Scholar

  • [38] S. M. McAfee, J. S. J. McCahill, C. M. Macaulay, A. D. Hendsbee and G. C. Welch, Utility of a Heterogeneous Palladium Catalyst for the Synthesis of a Molecular Semiconductor via Stille, Suzuki, and Direct Heteroarylation Cross-Coupling Reactions. RSC Adv., 5, 2015, 26097–26106. CrossrefWeb of ScienceGoogle Scholar

  • [39] Y.-A. Chen and C.-Y. Liu, Convenient Synthesis of Organic- Electronics-Oriented Building Blocks via on-Water and under- Air Homocoupling of (Hetero)aryl Iodides. RSC Adv., 5, 2015, 74180–74188. Web of ScienceCrossrefGoogle Scholar

  • [40] V.P. Ananikov and I.P. Beletskaya, Preparation of Metal "Nanosalts" and Their Application in Catalysis: Heterogeneous and Homogeneous Pathways. Dalton Trans., 40, 2011, 4011-4023. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-11-08

Accepted: 2016-12-23

Published Online: 2016-12-30


Citation Information: Organic Photonics and Photovoltaics, ISSN (Online) 2299-3177, DOI: https://doi.org/10.1515/oph-2016-0008.

Export Citation

© 2016 Valentine P. Ananikov. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maxim S. Skorotetcky, Nikolay M. Surin, Oleg V. Borshchev, and Sergei A. Ponomarenko
Mendeleev Communications, 2017, Volume 27, Number 4, Page 377

Comments (0)

Please log in or register to comment.
Log in