Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New journal!

Open Information Science

Editor-in-Chief: Sturges, Paul

1 Issue per year

Open Access
Online
ISSN
2451-1781
See all formats and pricing
More options …

Transformations in Breakthrough Research: The Emergence of Mirnas as a Research Routine in Molecular Biology

Paweł Kawalec
Published Online: 2018-10-30 | DOI: https://doi.org/10.1515/opis-2018-0010

Abstract

Of the three main areas of science studies that emerged after WWII (Kawalec, 2018), namely social studies of science, economics of knowledge and scientometrics, it was the latter that gained particular prominence in science policy around the 1990’s with the advent of New Public Management (Pollitt, Thiel, & Homburg, 2007). One of its focal areas has been identification of emerging topics in science. They are incessantly assumed to be an outcome of a simple cumulative progress of scientific knowledge (Price, 1976; Merton, 1988; Bird, 2007; Fochler, 2016). In my paper I challenge this assumption of simple cumulativity and argue that the emergence of breakthrough topics in science is preceded by a sequence of transformation phases. Using the example of “microRNA&cancer” as an emergent topic identified by a quantitative analysis of a large dataset of publications (Small et al. 2014) I demonstrate that the proposed analysis of transformation phases complements big data quantitative analyses with theoretical understanding of the dynamics mechanism and, in effect, leads to a more adequate characterization of the topic itself as well as a more precise identification of the source publications. While the proposed method uses a more complex (meso-level) unit of analysis (i.e. “research routines”) instead of citations and co-occurrence of single publications (micro-level), it integrates quantitative with qualitative analyses.

Keywords: emerging topics; research routine; mixed-methods research; microRNAs; progress in science and transition phases

References

  • Ambros, V. (1989). A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 57(1), 49-57. https://doi.org/10.1016/0092-8674(89)90171-2Google Scholar

  • Ambros, V. (2001). microRNAs: tiny regulators with great potential. Cell, 107(7), 823-826. https://doi.org/10.1016/ S0092-8674(01)00616-XGoogle Scholar

  • Ambros, V. (2003). MicroRNA Pathways in Flies and Worms. Cell, 113(6), 673-676. https://doi.org/10.1016/ S0092-8674(03)00428-8Google Scholar

  • Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350.Google Scholar

  • Ambros, V. (2008). Foreword. In K. Appasani (Ed.), MicroRNAs: from basic science to disease biology (pp. xxvii-xxviii). Cambridge; New York: Cambridge University Press.Google Scholar

  • Ambros, V., & Horvitz, H. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science, 226, 409-416.Google Scholar

  • Ambros, V., & Horvitz, H. R. (1987). The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes & Development, 1(4), 398-414. https://doi.org/10.1101/gad.1.4.398Google Scholar

  • Andersson, M., Johansson, B., Karlsson, C., & Loof, H. (Eds.). (2012). Innovation and growth: from R&D strategies of innovating firms to economy-wide technological change (1st ed). Oxford: Oxford University Press.Google Scholar

  • Ankeny, R. A., & Leonelli, S. (2016). Repertoires: A post-Kuhnian perspective on scientific change and collaborative research. Studies in History and Philosophy of Science Part A, 60, 18-28. https://doi.org/10.1016/j.shpsa.2016.08.003Google Scholar

  • Arbesman, S. (2011). Quantifying the ease of scientific discovery. Scientometrics, 86(2), 245-250. https://doi.org/10.1007/ s11192-010-0232-6Google Scholar

  • Avise, J. C. (2014). Conceptual breakthroughs in evolutionary genetics: a brief history of shifting paradigms. Amsterdam: Elsevier, Academic Press.Google Scholar

  • Bacharach, M. (2006). Beyond individual choice: teams and frames in game theory. (N. Gold & R. Sugden, Eds.). Princeton, N.J: Princeton University Press.Google Scholar

  • Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2), 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5Google Scholar

  • Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. https://doi.org/10.1016/j. cell.2009.01.002Google Scholar

  • Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., … Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766-770. https://doi.org/10.1038/ng1590Google Scholar

  • Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long Noncoding RNA and Cancer: A New Paradigm. Cancer Research, 77(15), 3965-3981. https://doi.org/10.1158/0008-5472.CAN-16-2634Google Scholar

  • Bird, A. (2007). What Is Scientific Progress? Nous, 41(1), 64-89. https://doi.org/10.1111/j.1468-0068.2007.00638.xGoogle Scholar

  • Bohme, G., Daele, W. van den, & Krohn, W. (1976). Finalization in Science. Social Science Information, 15, 307-330.Google Scholar

  • Bohme, G., Daele, W., Hohlfeld, R., Krohn, W., & Schafer, W. (1983). Finalization in Science: The Social Orientation of Scientific Progress. (P. Burgess, Trans.). Dordrecht: D. Reidel.Google Scholar

  • Borner, K., Boyack, K. W., Milojević, S., & Morris, S. (2012). An Introduction to Modeling Science: Basic Model Types, Key Definitions, and a General Framework for the Comparison of Process Models. In A. Scharnhorst, K. Borner, & P. van den Besselaar (Eds.), Models of Science Dynamics (pp. 3-22). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23068-4Google Scholar

  • Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell, 113(1), 25-36. https://doi.org/10.1016/S0092-8674(03)00231-9Google Scholar

  • Brown, J. S., & Duguid, P. (2001). Knowledge and Organization: A Social-Practice Perspective. Organization Science, 12(2), 198-213. https://doi.org/10.1287/orsc.12.2.198.10116Google Scholar

  • Cacciatori, E. (2012). Resolving Conflict in Problem-Solving: Systems of Artefacts in the Development of New Routines: Systems of Artefacts in the Development of Routines. Journal of Management Studies, 49(8), 1559-1585. https://doi.org/10.1111/j.1467-6486.2012.01065.xGoogle Scholar

  • Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., … Croce, C. M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 99(24), 15524-15529. https://doi.org/10.1073/pnas.242606799Google Scholar

  • Calin, George A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857-866. https://doi.org/10.1038/nrc1997Google Scholar

  • Callebaut, W. (2012). Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 69-80. https://doi.org/10.1016/j.shpsc.2011.10.007Google Scholar

  • Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67(6), 380-400. https://doi.org/10.1037/h0040373Google Scholar

  • Campbell, Neil A., J. L., & Reece, J. B. (2005). Biology (7th ed.). Boston: Pearson.Google Scholar

  • Caracelli, V. J., & Greene, J. C. (1997). Crafting mixed-method evaluation designs. New Directions for Evaluation, 1997(74), 19-32. https://doi.org/10.1002/ev.1069Google Scholar

  • Carlsson, B., Acs, Z. J., Audretsch, D. B., & Braunerhjelm, P. (2015). Knowledge creation, entrepreneurship, and economic growth: a historical review. In Z. Acs, Global Entrepreneurship, Institutions and Incentives (pp. 71-107). Edward Elgar Publishing. https://doi.org/10.4337/9781784718053.00013Google Scholar

  • Carroll, L. J., & Rothe, J. P. (2010). Levels of Reconstruction as Complementarity in Mixed Methods Research: A Social Theory-Based Conceptual Framework for Integrating Qualitative and Quantitative Research. International Journal of Environmental Research and Public Health, 7(9), 3478-3488. https://doi.org/10.3390/ijerph7093478Google Scholar

  • Chen, H. (1997). Applying mixed methods under the framework of theory-driven evaluations. New Directions for Evaluation, 1997(74), 61-72. https://doi.org/10.1002/ev.1072Google Scholar

  • Cohen, M. D. (2007). Reading Dewey: Reflections on the Study of Routine. Organization Studies, 28(5), 773-786. https://doi.org/10.1177/0170840606077620Google Scholar

  • Collins, H. M., & Evans, R. (2002). The Third Wave of Science Studies: Studies of Expertise and Experience. Social Studies of Science, 32(2), 235-296. https://doi.org/10.1177/0306312702032002003Google Scholar

  • D’Adderio, L. (2008). The performativity of routines: Theorising the influence of artefacts and distributed agencies on routines dynamics. Research Policy, 37(5), 769-789. https://doi.org/10.1016/j.respol.2007.12.012 de Haas, F. A., Leunissen, M., Martijn, M., & Ebbesen, S. (2015). Interpreting Aristotle’s Posterior Analytics in Late Antiquity and Beyond. Aestimatio: Critical Reviews in the History of Science, 9, 355-366.Google Scholar

  • De Langhe, R. (2017). Towards the discovery of scientific revolutions in scientometric data. Scientometrics, 110(1), 505-519. https://doi.org/10.1007/s11192-016-2108-xGoogle Scholar

  • de Rie, D., Abugessaisa, I., Alam, T., Arner, E., Arner, P., Ashoor, H., … de Hoon, M. J. L. (2017). An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 35(9), 872-878. https://doi.org/10.1038/nbt.3947Google Scholar

  • Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., … Guigo, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775-1789.https://doi.org/10.1101/gr.132159.111Google Scholar

  • Devlin, W. J., & Bokulich, A. (Eds.). (2015). Kuhn’s Structure of Scientific Revolutions - 50 Years On (Vol. 311). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-13383-6Google Scholar

  • Edmonds, W. A., & Kennedy, T. D. (2017). An applied guide to research designs: quantitative, qualitative, and mixed methods (Second Edition). Los Angeles: SAGE.Google Scholar

  • Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259-269. https://doi.org/10.1038/nrc1840Google Scholar

  • Feldman, M. S. (2016). Routines as Process. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 23-46). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.0002Google Scholar

  • Feldman, M. S., Pentland, B. T., D’Adderio, L., & Lazaric, N. (2016). Beyond Routines as Things: Introduction to the Special Issue on Routine Dynamics. Organization Science, 27(3), 505-513. https://doi.org/10.1287/orsc.2016.1070Google Scholar

  • Fochler, M. (2016). Variants of Epistemic Capitalism: Knowledge Production and the Accumulation of Worth in Commercial Biotechnology and the Academic Life Sciences. Science, Technology & Human Values, 41(5), 922-948. https://doi. org/10.1177/0162243916652224Google Scholar

  • Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and Innovation in Scientists’ Research Strategies. American Sociological Review, 80(5), 875-908. https://doi.org/10.1177/0003122415601618Google Scholar

  • Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105. https://doi.org/10.1101/gr.082701.108Google Scholar

  • Gitschier, J. (2010). In the Tradition of Science: An Interview with Victor Ambros. PLOS Genetics, 6(3), 1-4. https://doi. org/10.1371/journal.pgen.1000853Google Scholar

  • Gomułka, S. (1990). The Theory of Technological Change and Economic Growth. London: Routledge.Google Scholar

  • Grimes, R. L. (2013). The craft of ritual studies. Oxford ; New York: Oxford University Press, USA.Google Scholar

  • Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., … Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071-1076. https://doi.org/10.1038/nature08975Google Scholar

  • Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., … Lander, E. S. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223-227. https://doi.org/10.1038/nature07672Google Scholar

  • Harper, P. S. (2008). A short history of medical genetics. Oxford; New York: Oxford University Press.Google Scholar

  • Hesse-Biber, S. N., & Johnson, B. (Eds.). (2015). The Oxford handbook of multimethod and mixed methods research inquiry. Oxford ; New York: Oxford University Press.Google Scholar

  • Howard-Grenville, J., Golden-Biddle, K., Irwin, J., & Mao, J. (2010). Liminality as Cultural Process for Cultural Change. Organization Science, 22(2), 522-539. https://doi.org/10.1287/orsc.1100.0554Google Scholar

  • Howard-Grenville, J., Rerup, C., Langley, A., & Tsoukas, H. (2016). Introduction: Advancing a Process Perspective on Routines by Zooming Out and Zooming In. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 1-19). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.0001Google Scholar

  • Human Genome Sequencing Consortium, I. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011), 931-945. https://doi.org/10.1038/nature03001Google Scholar

  • Kawalec, P. (2014). Metody mieszane w kontekście procesu badawczego w naukoznawstwie. Zagadnienia Naukoznawstwa, 50(1(199)), 3-22.Google Scholar

  • Kawalec, P. (2016). W kierunku dojrzałości metodologicznej badań naukoznawczych. Zagadnienia Naukoznawstwa, 52(1(207)), 33-44.Google Scholar

  • Kawalec, P. (2017a). Towards an evolutionary model of science dynamics: generation and production of scientific knowledge. Zagadnienia Naukoznawstwa, 53(4(214)), 405-428.Google Scholar

  • Kawalec, P. (2017b). Perspectival representation in DSGE models. Economics and Business Review, 3(3), 80-99. https://doi.org/10.18559/ebr.2017.3.5Google Scholar

  • Kawalec, P. (2018). Philosophical Perspectives: The Science of Science - From Inception to Maturity. In F. Cain & B. Kleeberg (Eds.), A New Organon: Science Studies in Interwar Poland (pp. 521-535). Tubingen: Mohr Siebeck.Google Scholar

  • Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., … Rinn, J. L. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11667-11672. https://doi.org/10.1073/pnas.0904715106Google Scholar

  • Kuhn, T. S. (1962). The Structure of Scientific Revolutions. In International Encyclopedia of Unified Science (1st ed., Vol. 2). Chicago: Chicago University Press.Google Scholar

  • Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: Chicago University Press.Google Scholar

  • Kung, J. T. Y., Colognori, D., & Lee, J. T. (2013). Long Noncoding RNAs: Past, Present, and Future. Genetics, 193(3), 651-669. https://doi.org/10.1534/genetics.112.146704Google Scholar

  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294(5543), 853-858. https://doi.org/10.1126/science.1064921Google Scholar

  • Latour, B., & Woolgar, S. (1986). Laboratory life: the construction of scientific facts (2nd ed.). Princeton: Princeton University Press.Google Scholar

  • Lau, N. C., Lee, L. P., Weinstein, E. G., & Bartel, D. P. (2001). An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science, 294(5543), 858-862. https://doi.org/10.1126/science.1065062Google Scholar

  • Laudel, G., & Glaser, J. (2014). Beyond breakthrough research: Epistemic properties of research and their consequences for research funding. Research Policy, 43(7), 1204-1216. https://doi.org/10.1016/j.respol.2014.02.006Google Scholar

  • Lee, R. C., & Ambros, V. (2001). An Extensive Class of Small RNAs in Caenorhabditis elegans. Science, 294(5543), 862-864. https://doi.org/10.1126/science.1065329Google Scholar

  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. https://doi.org/10.1016/0092-8674(93)90529-YGoogle Scholar

  • Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15-20. https://doi.org/10.1016/j.cell.2004.12.035Google Scholar

  • Leydesdorff, L. (2000). The triple helix: an evolutionary model of innovations. Research Policy, 29(2), 243-255. https://doi. org/10.1016/S0048-7333(99)00063-3Google Scholar

  • Li, M., Porter, A. L., & Suominen, A. (2017). Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective. Technological Forecasting and Social Change. https://doi. org/10.1016/j.techfore.2017.09.032Google Scholar

  • Lieberman, E. S. (2005). Nested Analysis as a Mixed-Method Strategy for Comparative Research. American Political Science Review, 99(03), 435-452. https://doi.org/10.1017/S0003055405051762Google Scholar

  • Liu, Z. C., & Ambros, V. (1989). Heterochronic genes control the stage-specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes & Development, 3(12b), 2039-2049. https://doi.org/10.1101/gad.3.12b.2039Google Scholar

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262Google Scholar

  • Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., … Golub, T. R. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834-838. https://doi.org/10.1038/nature03702Google Scholar

  • Marcum, J. A. (2015). Thomas Kuhn’s revolutions: a historical and an evolutionary philosophy of science? London New Dehli New York Sydney: Bloomsbury.Google Scholar

  • Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509-1517. https://doi.org/10.1101/gr.079558.108Google Scholar

  • Mattick, J. S., & Rinn, J. L. (2015). Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology, 22(1), 5-7. https://doi.org/10.1038/nsmb.2942Google Scholar

  • Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: insights into functions. Nature Reviews. Genetics, 10(3), 155-159. https://doi.org/10.1038/nrg2521Google Scholar

  • Merton, R. K. (1988). The Matthew Effect in Science, II: Cumulative Advantage and the Symbolism of Intellectual Property. Isis, 79(4), 606-623.Google Scholar

  • Miettinen, R., Tuunainen, J., & Esko, T. (2015). Epistemological, Artefactual and Interactional-Institutional Foundations of Social Impact of Academic Research. Minerva, 53(3), 257-277. https://doi.org/10.1007/s11024-015-9278-1Google Scholar

  • Miner, A. S., Ciuchta, M. P., & Gong, Y. (2008). Organizational routines and organizational learning. In M. C. Becker (Ed.), Handbook of organizational routines (pp. 152-186). Cheltenham, UK ; Northampton, MA: Edward Elgar.Google Scholar

  • Nickles, T. (2016). Fast and Frugal Heuristics at Research Frontiers. In E. Ippoliti, F. Sterpetti, & T. Nickles (Eds.), Models and Inferences in Science (Vol. 25, pp. 31-54). Cham: Springer International Publishing.Google Scholar

  • Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: knowledge and the public in an age of uncertainty. Cambridge, UK: Polity.Google Scholar

  • Park, P. J. (2009). ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews Genetics, 10(10), 669-680.https://doi.org/10.1038/nrg2641Google Scholar

  • Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., … Ruvkun, E. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86-89. Pearson, A., White, H., Bath-Hextall, F., Salmond, S., Apostolo, J., & Kirkpatrick, P. (2015). A mixed-methods approach to systematic reviews: International Journal of Evidence-Based Healthcare, 13(3), 121-131. https://doi.org/10.1097/XEB.0000000000000052Google Scholar

  • Pentland, B. T., & Jung, E. J. (2016). Evolutionary and Revolutionary Change in Path-Dependent Patterns of Action. In J. Howard-Grenville, C. Rerup, A. Langly, & H. Tsoukas (Eds.), Organizational Routines (pp. 96-113). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198759485.003.0005Google Scholar

  • Pitman, J. (2006). Combinatorial stochastic processes: Ecole d’ete de probabilités de Saint-Flour XXXII - 2002. (J. Picard, Ed.). Berlin ; New York: Springer-Verlag.Google Scholar

  • Pollitt, C., Thiel, S. van, & Homburg, V. (2007). New public management in Europe: adaptation and alternatives. Basingstoke [England]; New York: Palgrave Macmillan.Google Scholar

  • Price, D. J. de S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292-306. https://doi.org/10.1002/asi.4630270505Google Scholar

  • Psillos, S. (2014). The View from Within and the View from Above: Looking at van Fraassen’s Perrin. In W. J. Gonzalez (Ed.), Bas van Fraassen’s Approach to Representation and Models in Science (pp. 143-166). Dordrecht: Springer Netherlands. https://link.springer.com/10.1007/978-94-007-7838-2_7Google Scholar

  • Ranzani, V., Arrigoni, A., Rossetti, G., Panzeri, I., Abrignani, S., Bonnal, R. J. P., & Pagani, M. (2017). Next-Generation Sequencing Analysis of Long Noncoding RNAs in CD4+ T Cell Differentiation. In E. Lugli (Ed.), T-Cell Differentiation (Vol. 1514, pp. 173-185). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-6548-9_14Google Scholar

  • Reale, E., Avramov, D., Canhial, K., Donovan, C., Flecha, R., Holm, P., … Van Horik, R. (2017). A review of literature on evaluating the scientific, social and political impact of social sciences and humanities research. Research Evaluation. https://doi. org/10.1093/reseval/rvx025Google Scholar

  • Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J., Rougvie, A., … Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901-906.Google Scholar

  • Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., … Chang, H. Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311-1323. https://doi.org/10.1016/j.cell.2007.05.022Google Scholar

  • Rotolo, D., Rafols, I., Hopkins, M. M., & Leydesdorff, L. (2017). Strategic intelligence on emerging technologies: Scientometric overlay mapping. Journal of the Association for Information Science and Technology, 68(1), 214-233. https://doi.org/10.1002/asi.23631Google Scholar

  • Ruvkun, G., Ambros, V., Coulson, A., Waterston, R., Sulston, J., & Horvitz, H. R. (1989). Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics, 121(3), 501-516.Google Scholar

  • Salatino, A. A., Osborne, F., & Motta, E. (2017). How are topics born? Understanding the research dynamics preceding the emergence of new areas. PeerJ Computer Science, 3, e119. https://doi.org/10.7717/peerj-cs.119Google Scholar

  • Salmieri, G., Bronstein, D., Charles, D., & Lennox, J. G. (2014). Episteme, demonstration, and explanation: A fresh look at Aristotle’s Posterior Analytics. Metascience, 23(1), 1-35.Google Scholar

  • Schneider, J. W., & Costas, R. (2017). Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches. Journal of the Association for Information Science and Technology, 68(3), 709-723. https://doi.org/10.1002/asi.23695Google Scholar

  • Simonton, D. K. (2011). Creativity and discovery as blind variation: Campbell’s (1960) BVSR model after the half-century mark. Review of General Psychology, 15(2), 158-174. https://doi.org/10.1037/a0022912Google Scholar

  • Siqueiros-Garcia, J. M., Hernandez-Lemus, E., Garcia-Herrera, R., & Robina-Galatas, A. (2014). Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks. PLoS ONE, 9(4), e92639. https://doi.org/10.1371/journal.pone.0092639Google Scholar

  • Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450-1467. https://doi.org/10.1016/j.respol.2014.02.005Google Scholar

  • Trice, H. M., & Beyer, J. M. (1984). Studying Organizational Cultures Through Rites and Ceremonials. Academy of Management Review, 9(4), 653-669. https://doi.org/10.5465/AMR.1984.4277391Google Scholar

  • Tripathi, R., Chakraborty, P., & Varadwaj, P. K. (2017). Unraveling long non-coding RNAs through analysis of high-throughput RNA-sequencing data. Non-Coding RNA Research, 2(2), 111-118. https://doi.org/10.1016/j.ncrna.2017.06.003Google Scholar

  • Turner, S. F., & Fern, M. J. (2012). Examining the Stability and Variability of Routine Performances: The Effects of Experience and Context Change: Stability and Variability of Routine Performances. Journal of Management Studies, 49(8), 1407-1434. https://doi.org/10.1111/j.1467-6486.2012.01061.xGoogle Scholar

  • Turner, V. (1969). The Ritual Process: Structure and Anti-Structure. London: Routledge.Google Scholar

  • van den Ende, L., & van Marrewijk, A. (2014). The ritualization of transitions in the project life cycle: A study of transition rituals in construction projects. International Journal of Project Management, 32(7), 1134-1145. https://doi.org/10.1016/j.ijproman.2014.02.007Google Scholar

  • van Fraassen, B. C. (2009). The perils of Perrin, in the hands of philosophers. Philosophical Studies, 143(1), 5-24. https://doi. org/10.1007/s11098-008-9319-9Google Scholar

  • van Fraassen, B. C. (2014). The Criterion of Empirical Grounding in the Sciences. In W. J. Gonzalez (Ed.), Bas van Fraassen’s Approach to Representation and Models in Science (pp. 79-100). Dordrecht: Springer Netherlands. Retrieved from http://link.springer.com/10.1007/978-94-007-7838-2_4Google Scholar

  • van Gennep, A. (1960). The rites of passage. Chicago: Chicago University Press.Google Scholar

  • Volinia, S., Calin, G. A., Liu, C.-G., Ambs, S., Cimmino, A., Petrocca, F., … Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257-2261. https://doi.org/10.1073/pnas.0510565103Google Scholar

  • Westgate, M. J., Barton, P. S., Pierson, J. C., & Lindenmayer, D. B. (2015). Text analysis tools for identification of emerging topics and research gaps in conservation science: Text Analysis for Research Synthesis. Conservation Biology, 29(6), 1606-1614. https://doi.org/10.1111/cobi.12605Google Scholar

  • Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855-862. https://doi.org/10.1016/0092-8674(93)90530-4Google Scholar

  • Winnink, J. J., Tijssen, R. J. W., & van Raan, A. F. J. (2016). Theory-changing breakthroughs in science: The impact of research teamwork on scientific discoveries. Journal of the Association for Information Science and Technology, 67(5), 1210-1223. https://doi.org/10.1002/asi.23505Google Scholar

  • Winter, S. G. (2013). Habit, Deliberation, and Action: Strengthening the Microfoundations of Routines and Capabilities. Academy of Management Perspectives, 27(2), 120-137. https://doi.org/10.5465/amp.2012.0124Google Scholar

  • Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2017.10.001Google Scholar

About the article

Received: 2018-01-10

Accepted: 2018-08-20

Published Online: 2018-10-30

Published in Print: 2018-10-01


Citation Information: Open Information Science, Volume 2, Issue 1, Pages 127–146, ISSN (Online) 2451-1781, DOI: https://doi.org/10.1515/opis-2018-0010.

Export Citation

© by Paweł Kawalec, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in