Jump to ContentJump to Main Navigation
Show Summary Details
More options …
New journal!

Open Information Science

Editor-in-Chief: Sturges, Paul

Open Access
Online
ISSN
2451-1781
See all formats and pricing
More options …

Risk as a Predictor of Online Competitive Information Acquisition

Daphne Ruth Raban / Lior Koren
Published Online: 2019-04-05 | DOI: https://doi.org/10.1515/opis-2019-0004

Abstract

This study set out to investigate how personal user traits and behavior and information cues influence the acquisition of online information for actionable decisions. The relationship between personal traits (risk propensity and individual information absorptive capacity), behavioral factors (perceived risk and willingness-to-pay) and informational cues (scenario risk level) was examined by conducting an experiment with 125 mid-level managers. Participants were exposed to high- and low-risk scenarios, given the opportunity to consume free and fee-based competitive information sources, and asked to make a managerial decision. Results of the Willingness-to-Pay (WTP) for information sources indicate: (i) a significant correlation between the perceived risk and WTP, (ii) a significant correlation between the perceived risk and the number of competitive intelligence information items bought, (iii) individual absorptive capacity has high internal reliability, and (iv) investment risk propensity and individual information absorptive capacity did not influence WTP or willingness-to-consume competitive intelligence information. Informational cues rather than personal traits impact decision makers' WTP and willingness to-consume competitive intelligence information. This suggests that best practices should be developed for the use of online information sources in decision-making calibrated to the risk level. Risk level indication may also aid to avoid biases stemming from under- or overuse of information.

Keywords: competitive intelligence; willingness-to-pay (WTP(; risk propensity; individual absorptive capacity (IACAP(; decision-making; Information Behavior (IB(

References

  • Andreou, A. N., & Bontis, N. (2007). A model for resource allocation using operational knowledge assets. The Learning Organization, 14(4), 345-374.Google Scholar

  • Ashton, W. B., & Stacey, G. S. (1995). Technical intelligence in business: Understanding technology threats and opportunities. International Journal of Technology Management, 10(1), 79-104.Google Scholar

  • Azvine, B., Cui, Z., Nauck, D., & Majeed, B. (2006). Real time business intelligence for the adaptive enterprise. Paper presented at the 8th IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services , San Francisco, CA. 29-39.Google Scholar

  • Baldwin, N. S., & Rice, R. E. (1997). Information-seeking behavior of securities analysts: Individual and institutional influences, information sources and channels and outcomes. Journal of the American Society for Information Science, 48(8), 674-693.Google Scholar

  • Brouwer, R., Brander, L., & Van Beukering, P. (2008). “A convenient truth”: Air travel passengers’ willingness to pay to offset their CO 2 emissions. Climatic Change, 90(3), 299-313.CrossrefGoogle Scholar

  • Calof, J., Arcos, R., & Sewdass, N. (2017). Competitive intelligence practices of european firms. Technology Analysis & Strategic Management, , 1-14.Google Scholar

  • Chen, S. Y., Magoulas, G. D., & Dimakopoulos, D. (2005). A flexible interface design for web directories to accommodate different cognitive styles. Journal of the American Society for Information Science and Technology, 56(1), 70-83.Google Scholar

  • Cho, J., & Lee, J. (2006). An integrated model of risk and risk-reducing strategies. Journal of Business Research, 59(1), 112-120.Google Scholar

  • Choo, C. W. (1993). Environmental scanning: Acquisition and use of information by managers. Paper presented at the In ME Williams (Ed.), Annual Review of Information Science and Technology (Vol. 28),Google Scholar

  • Choo, C. W., Detlor, B., & Turnbull, D. (2000). Web work: Information seeking and knowledge work on the world wide web. Dordecht, The Netherlands: Kluwer Academic Publishing.Google Scholar

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128-152.CrossrefGoogle Scholar

  • Comai, A., & Tena, J. (2007). Early warning systems for your competitive landscape. Competitive Intelligence Magazine, 10(3), 7-11.Google Scholar

  • Dachraoui, K., Dionne, G., Eeckhoudt, L., & Godfroid, P. (2004). Comparative mixed risk aversion: Definition and application to self-protection and willingness to pay. Journal of Risk and Uncertainty, 29(3), 261-276.CrossrefGoogle Scholar

  • Delmas, M., Hoffmann, V. H., & Kuss, M. (2011). Under the tip of the iceberg: Absorptive capacity, environmental strategy, and competitive advantage. Business & Society, 50(1), 116-154.CrossrefGoogle Scholar

  • Dervin, B. (2005). What methodology does to theory: Sense-making methodology as exemplar. In K. E. Fisher, S. Erdelez & L. (. F. ). McKechnie (Eds.), Theories of information behavior (pp. 25-30). Medford, New Jersey: Information Today.Google Scholar

  • Desouza, K. C., & Evaristo, J. R. (2006). Project management offices: A case of knowledge-based archetypes. International Journal of Information Management, 26(5), 414-423.CrossrefGoogle Scholar

  • Dillingham, I., Dykes, J., & Wood, J. (2012). Characterising locality descriptions in crowdsourced crisis information. Paper presented at the GIS Research UK 20th Annual Conference, Lancaster University, UK.Google Scholar

  • Dishman, P. L., & Calof, J. L. (2008). Competitive intelligence: A multiphasic precedent to marketing strategy. European Journal of Marketing, 42(7/8), 766-785.CrossrefGoogle Scholar

  • Fischhoff, B., & Kadvany, J. (2011). Risk: A very short introduction Oxford University Press.CrossrefGoogle Scholar

  • Fisher, K. E., & McKechnie, L. (2005). Theories of information behavior. Medford, New Jersey: Information Today, Inc.Google Scholar

  • Fleisher, C. S., & Blenkhorn, D. L. (2001). Managing frontiers in competitive intelligence Greenwood Publishing Group.Google Scholar

  • Ford, N., Miller, D., & Moss, N. (2001). The role of individual differences in internet searching: An empirical study. Journal of the American Society for Information Science and Technology, 52(12), 1049-1066.CrossrefGoogle Scholar

  • Ford, N., Wilson, T., Foster, A., Ellis, D., & Spink, A. (2002). Information seeking and mediated searching. part 4. cognitive styles in information seeking. Journal of the American Society for Information Science and Technology, 53(9), 728-735.CrossrefGoogle Scholar

  • Forlani, D., Mullins, J. W., & Walker, O. C. (2002). New product decision-making: How chance and size of loss influence what marketing managers see and do. Psychology & Marketing, 19(11), 957-981.CrossrefGoogle Scholar

  • Frias-Martinez, E., Chen, S. Y., & Liu, X. (2007). Automatic cognitive style identification of digital library users for personalization. Journal of the American Society for Information Science and Technology, 58(2), 237-251.CrossrefGoogle Scholar

  • Gilad, B. (2004). Early warning: Using competitive intelligence to anticipate market shifts, control risk, and create powerful strategies. NY: Amacom.Google Scholar

  • Gupta, A. K., & Govindarajan, V. (2000). Knowledge flows within multinational corporations. Strategic Management Journal, 21(4), 473-496.CrossrefGoogle Scholar

  • Hanoch, Y., Johnson, J. G., & Wilke, A. (2006). Domain specificity in experimental measures and participant recruitment: An application to risk-taking behavior. Psychological Science, 17(4), 300-304.CrossrefPubMedGoogle Scholar

  • Heinstrom, J. (2010). From fear to flow: Personality and information interaction. Oxford, UK: Chandos Publishing.Google Scholar

  • Jones-Lee, M. (1974). The value of changes in the probability of death or injury. The Journal of Political Economy, 82(4), 835-849.CrossrefGoogle Scholar

  • Keil, M., Tan, B. C., Wei, K., Saarinen, T., Tuunainen, V., & Wassenaar, A. (2000). A cross-cultural study on escalation of commitment behavior in software projects. Mis Quarterly, 24(2), 299-325.CrossrefGoogle Scholar

  • Knetsch, J. L., & Sinden, J. A. (1984). Willingness to pay and compensation demanded: Experimental evidence of an unexpected disparity in measures of value. The Quarterly Journal of Economics, 99(3), 507-521.Google Scholar

  • Kuhlthau, C. C. (1993). A principle of uncertainty for information seeking. Journal of Documentation, 49(4), 339-355.CrossrefGoogle Scholar

  • Lane, P. J., Koka, B. R., & Pathak, S. (2006). The reification of absorptive capacity: A critical review and rejuvenation of the construct. Academy of Management Review, 31(4), 833-863.Google Scholar

  • Maritz, R., & du Toit, A. (2018). The practice turn within strategy: Competitive intelligence as integrating practice. South African Journal of Economic and Management Sciences, 21(1), 14.CrossrefGoogle Scholar

  • Markovich, A., Efrat, K., & Raban, D. R. (2016). The impact of perceived quality of web information on information use and company performance: A knowledge-based view. Paper presented at the Euram 2016, Paris.Google Scholar

  • Miller, K. M., Hofstetter, R., Krohmer, H., & Zhang, Z. J. (2011). How should consumers’ willingness to pay be measured? an empirical comparison of state-of-the-art approaches. Journal of Marketing Research, 48(1), 172-184.CrossrefGoogle Scholar

  • Mitchell, V. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1/2), 163-195.CrossrefGoogle Scholar

  • Nicholson, N., Soane, E., Fenton-O’Creevy, M., & Willman, P. (2005). Personality and domain-specific risk taking. Journal of Risk Research, 8(2), 157-176.CrossrefGoogle Scholar

  • Palmquist, R. A., & Kim, K. (2000). Cognitive style and on-line database search experience as predictors of web search performance. Journal of the American Society for Information Science, 51(6), 558-566.CrossrefGoogle Scholar

  • Pennings, J. M., & Harianto, F. (1992). The diffusion of technological innovation in the commercial banking industry. Strategic Management Journal, 13(1), 29-46.CrossrefGoogle Scholar

  • Peterson, E. R., Rayner, S. G., & Armstrong, S. J. (2009). Researching the psychology of cognitive style and learning style: Is there really a future? Learning and Individual Differences, 19(4), 518-523.Google Scholar

  • Raban, D. R. (2007). User-centered evaluation of information: A research challenge. Internet Research, 17(3), 306-322.CrossrefGoogle Scholar

  • Raban, D. R. (2008). The incentive structure in an online information market. Journal of the American Society for Information Science and Technology, 59(14), 2284-2295.CrossrefGoogle Scholar

  • Raban, D. R., & Mazor, M. (2013). The willingness to pay for information in digital marketplaces. Lecture Notes in Business Information Processing, 158, 267-277.Google Scholar

  • Regner, T., Barria, J. A., Pitt, J. V., & Neville, B. (2010). Governance of digital content in the era of mass participation. Electronic Commerce Research, 10(1), 99-110.CrossrefGoogle Scholar

  • Rouach, D., & Santi, P. (2001). Competitive intelligence adds value:: Five intelligence attitudes. European Management Journal, 19(5), 552-559.Google Scholar

  • Savolainen, R. (2000). Incorporating small parts and gap-bridging: Two metaphorical approaches to information use. The New Review of Information Behaviour Research, 1(January), 35-50.Google Scholar

  • Shampanier, K., Mazar, N., & Ariely, D. (2007). Zero as a special price: The true value of free products. Marketing Science, 26(6), 742.CrossrefGoogle Scholar

  • Sikkens, A. (2013). The joint influence of personality traits and individual absorptive capacity on innovation activities in SME’s. The Netherlands: University of Twente.Google Scholar

  • Sitkin, S. B., & Pablo, A. L. (1992). Reconceptualizing the determinants of risk behavior. Academy of Management Review, 17(1), 9-38.CrossrefGoogle Scholar

  • Taylor, R. N., & Dunnette, M. D. (1974). Influence of dogmatism, risk-taking propensity, and intelligence on decision-making strategies for a sample of industrial managers. Journal of Applied Psychology, 59(4), 420-423.Google Scholar

  • ter Wal, A., Criscuolo, P., & Salter, A. (2011). Absorptive capacity at the individual level: An ambidexterity approach to external engagement. Paper presented at the DRUID 2011-INNOVATION, STRATEGY, and STRUCTURE-Organizations, Institutions, Systems and Regions, Copenhagen, Denmark.Google Scholar

  • Tsai, W. (2001). Knowledge transfer in intraorganizational networks: Effects of network position and absorptive capacity on business unit innovation and performance. Academy of Management Journal, 44(5), 996-1004.Google Scholar

  • Vilar, P., & Žumer, M. (2008). Perceptions and importance of user friendliness of IR systems according to users’ individual characteristics and academic discipline. Journal of the American Society for Information Science and Technology, 59(12), 1995-2007.CrossrefGoogle Scholar

  • Volberda, H., W., Foss, N. J., & Lyles, M. A. (2009). Absorbing the concept of absorptive capacity: How to realize its potential in the organization field.21(4), 931-951.Google Scholar

  • Wang, P., Hawk, W. B., & Tenopir, C. (2000). Users’ interaction with world wide web resources: An exploratory study using a holistic approach. Information Processing & Management, 36(2), 229-251.Google Scholar

  • Zhang, L. (2006). Perspectives on the nature of intellectual styles. New York: Springer Publishing Company.Google Scholar

About the article

Received: 2018-07-09

Accepted: 2019-01-15

Published Online: 2019-04-05

Published in Print: 2019-01-01


Citation Information: Open Information Science, Volume 3, Issue 1, Pages 47–60, ISSN (Online) 2451-1781, DOI: https://doi.org/10.1515/opis-2019-0004.

Export Citation

© 2019 Daphne Ruth Raban et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in