Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Linguistics

Editor-in-Chief: Ehrhart, Sabine

1 Issue per year

Covered by:
Elsevier - SCOPUS
Clarivate Analytics - Emerging Sources Citation Index

Open Access
See all formats and pricing
More options …

Conversational Network in the Chinese Buddhist Canon

John Lee / Tak-sum Wong
Published Online: 2016-10-26 | DOI: https://doi.org/10.1515/opli-2016-0022


This article describes a method to analyze characters in a literary text by considering their verbal interactions. This method exploits techniques from computational linguistics to extract all direct speech from a treebank, and to build a conversational network that visualizes the speakers, the listeners and their degree of interaction. We apply this method to create and visualize a conversational network for the Chinese Buddhist Canon. We analyze the protagonists and their interlocutors, and report statistics on their number of utterances and types of listeners, how their speech was reported, and subcommunities in the network.

Keywords: treebank; direct speeech; Chinese Buddhist Canon; conversational network


  • Agarwal, Apoorv, Rambow, Owen, and Passonneau, Rebecca J. 2010. Annotation Scheme for Social Network Extraction from Text. In Proc. Association for Computational Linguistics (ACL).Google Scholar

  • Agarwal, Apoorv, Corvalan, Augusto, Jensen, Jacob, and Rambow, Owen. 2012. Social Network Analysis of Alice in Wonderland. Proc. Workshop on Computational Linguistics for Literature.Google Scholar

  • Baker, Paul, Gabrielatos, Costas, and McEnery, Tony. 2013. Sketching Muslims: A Corpus Driven Analysis of Representations Around the Word ‘Muslim’ in the British Press 1998-2009. Applied Linguistics 34(3):255-278.Google Scholar

  • Bingenheimer, Marcus, Hung, Jen-Jou, and Wiles, Simon. (2011). Social network visualization from TEI data. Literary and Linguistic Computing 26(3):271-278.Google Scholar

  • Bisang, Walter. 2014. On the strength of morphological paradigms: A historical account of radical pro-drop. In Paradigm Change: In the Transeurasian Languages and Beyond, pages 23−61.Google Scholar

  • Celikyilmaz Asli, Hakkani-Tur, Dilek, He, Hua, Kondrak, Greg, and Barbosa, Denilson. 2010. The Actor-Topic Model for Extracting Social Networks in Literary Narrative. In Proc. NIPS Machine Learning for Social Computing Workshop.Google Scholar

  • Chang, Pi-Chuan, Tseng, Huihsin, Jurafsky, Dan and Manning Christopher D. 2009. Discriminative reordering with Chinese grammatical relations features. In Proc. 3rd Workshop on Syntax and Structure in Statistical Translation.Google Scholar

  • Crane, Gregory. 2006. What Do You Do with a Million Books? D-Lib Magazine 12(3). http://www.dlib.org/dlib/march06/ crane/03crane.htmlGoogle Scholar

  • Csomay, Eniko. 2013. Lexical Bundles in Discourse Structure: A Corpus-Based Study of Classroom Discourse. Applied Linguistics 34(3):369-388.Google Scholar

  • DDBC. 2008. Buddhist Studies Person Authority Databases (Beta Version). Buddhist Studies Authority Database Project, Dharma Drum Buddhist College. Accessed at http://authority.ddbc.edu.tw/person/Google Scholar

  • Diesner, Jana, Frantz, Terrill L., and Carley, Kathleen M.. 2005. Communication Networks from the Enron Email Corpus: It’s Always about the People, Enron is no Different. Computational and Mathematical Organization Theory 11(3):201-228.Google Scholar

  • Doddington, George, Mitchell, Alexis, Przybocki, Mark, Ramshaw, Lance, Strassel, Strassel, and Weischedel, Ralph. 2004. The Automatic Content Extraction (ACE) Program: Tasks, Data, and Evaluation. In Proc. Language Resources and Evaluation Conference (LREC).Google Scholar

  • Elson, David K., Dames, Nicholas, and McKeown, Kathleen R. 2010. Extracting social networks from literary fiction. In Proc. Association for Computational Linguistics (ACL).Google Scholar

  • Elson, David K. and McKeown, Kathleen R. 2010. Automatic attribution of quoted speech in literary narrative. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), Atlanta, Georgia.Google Scholar

  • Gansner, Emden R., & North, Stephen C. 2000. An open graph visualization system and its applications to software engineering. Software Practice and Experience, 30(11):1203-1233.Google Scholar

  • Holmes, David I. 1994. Authorship Attribution. Computers and the Humanities 28(2):87-106.Google Scholar

  • Hung, Jen-Jou, Bingenheimer, Marcus, and Wiles, Simon. 2010. Quantitative evidence for a hypothesis regarding the attribution of early Buddhist translations. Literary and Linguistic Computing 25(1):119-34.Google Scholar

  • Kieschnick, John. 2014. A Primer in Chinese Buddhist Writings: Volume One: Foundations: Translation Key. Department of Religious Studies, Stanford University. Accessed 18th August 2015. http://religiousstudies.stanford.edu/a-primer-inchinese- buddhist-writings/Google Scholar

  • Knuth, Donald E. 1993. The Stanford GraphBase: A Platform for Combinatorial Computing. Reading, MA: Addison-Wesley.Google Scholar

  • Lafferty, John, McCallum, Andrew, and Pereira, Fernando C. N. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. International Conference on Machine Learning (ICML), pages 282-289.Google Scholar

  • Lancaster, Lewis. 2010. From Text to Image to Analysis: Visualization of Chinese Buddhist Canon. In Proc. Digital Humanities. Lancaster, Lewis and Park, Sung-bae. 1979. The Korean Buddhist Canon: A Descriptive Catalogue. Berkeley: Berkeley University Press.Google Scholar

  • Lee, John and Kong, Yin Hei. 2016. A dependency treebank of Chinese Buddhist texts. In Digital Scholarship in the Humanities 31(1):140-151.Google Scholar

  • Lee, John and Wong, Tak Sum. 2016. Hierarchy of characters in the Chinese Buddhist Canon. In Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, pages 531-534.Google Scholar

  • Liang, Jisheng, Dhillon, Navdeep, and Koperski, Krzysztof. 2010. A large-scale system for annotating and querying quotations in news feeds. In Proceedings of the 3rd International Semantic Search Workshop, pages 1–5.Google Scholar

  • Mahlberg, Michaela and Smith, Catherine. 2012. Dickens, the suspended quotation and the corpus. Language and Literature 21(1):51-65.Google Scholar

  • McDonald, Ryan, Lerman, Kevin and Pereira, Fernando. 2006. Multilingual dependency parsing with a two-stage discriminative parser. In Proc. 10th Conference on Computational Natural Language Learning (CoNLL-X).Google Scholar

  • Moretti, Franco. 1999. Atlas of the European Novel 1800-1900. London: Verso.Google Scholar

  • Moretti, Franco. 2011. Network Theory, Plot Analysis. New Left Review 68: 80-102.Google Scholar

  • Mutton, Paul. 2004. Inferring and Visualizing Social Networks on Internet Relay Chat. Proc. 8th International Conference on Information Visualization.Google Scholar

  • Newman, Mark. 2010. Networks: An Introduction. New York: Oxford University Press.Google Scholar

  • Oelke, Daniela, Kokkinakis, Dimitrios, and Keim, Daniel. A. 2013. Fingerprint Matrices: Uncovering the dynamics of social networks in prose literature. Computer Graphics Forum 32(3.4):371-380.Google Scholar

  • Pareti, Silvia, O’Keefe, Timothy, Konstas, Ioannis, Curran, James R., and Koprinska, Irena. 2013. Automatically Detecting and Attributing Indirect Quotations. In Proc. Empirical Methods for Natural Language Processing (EMNLP).Google Scholar

  • Pouliquen, Bruno, Steinberger, Ralf, and Best, Clive. 2007. Automatic detection of quotations in multilingual news. In Proceedings of Recent Advances in Natural Language Processing, pages 487–492.Google Scholar

  • Rydberg-Cox, Jeff. 2011. Social Networks and the Language of Greek Tragedy. Journal of the Chicago Colloquium on Digital Humanities and Computer Science 1(3). https://letterpress.uchicago.edu/index.php/jdhcs/article/view/86Google Scholar

  • Sealey, Alison. 2010. Probabilities and Surprises: A Realist Approach to Identifying Linguistic and Social Patterns, with Reference to an Oral History Corpus. Applied Linguistics 31(2):215-235.Google Scholar

  • Stiller, James, Nettle, Daniel, and Dunbar, Robin I. M. 2003. The Small World of Shakespeare’s Plays. Human Nature 14(4):397-408.Google Scholar

  • Xue, Naiwen, Xia, Fei, Chiou, Fu-dong, and Palmer, Marta. 2005. The Penn Chinese Treebank: Phrase structure annotation of a large corpus. Natural Language Engineering, 11:207-238.Google Scholar

  • Zhao, Hai, Huang, Chang-Ning and Li, Mu. 2007. An Improved Chinese Word Segmentation System with Conditional Random Field. In H. T. Ng, & O. O. Y. Kwong (Eds.), Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Stroudsburg, PA: Association for Computational Linguistics, pages 162-165. Google Scholar

About the article

Received: 2016-02-29

Accepted: 2016-09-25

Published Online: 2016-10-26

Citation Information: Open Linguistics, Volume 2, Issue 1, ISSN (Online) 2300-9969, DOI: https://doi.org/10.1515/opli-2016-0022.

Export Citation

© 2016 John Lee, Tak-sum Wong. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in