Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Philosophy

Editor-in-Chief: Harman, Graham

Covered by:
DOAJ - Directory of Open Access Journals

Open Access
See all formats and pricing
More options …

Modeling Working Memory to Identify Computational Correlates of Consciousness

James A. Reggia / Garrett E. Katz / Gregory P. Davis
Published Online: 2019-09-03 | DOI: https://doi.org/10.1515/opphil-2019-0022


Recent advances in philosophical thinking about consciousness, such as cognitive phenomenology and mereological analysis, provide a framework that facilitates using computational models to explore issues surrounding the nature of consciousness. Here we suggest that, in particular, studying the computational mechanisms of working memory and its cognitive control is highly likely to identify computational correlates of consciousness and thereby lead to a deeper understanding of the nature of consciousness. We describe our recent computational models of human working memory and propose that three computational correlates of consciousness follow from the results of this work: itinerant attractor sequences, top-down gating, and very fast weight changes. Our current investigation is focused on evaluating whether these three correlates are sufficient to create more complex working memory models that encompass compositionality and basic causal inference. We conclude that computational models of working memory are likely to be a fruitful approach to advancing our understanding of consciousness in general and in determining the long-term potential for development of an artificial consciousness specifically.

Keywords: computational correlates; computational explanatory gap; cognitive control; working memory; cognitive phenomenology; mereology; machine consciousness; artificial consciousness; mind-brain problem


  • Akam, Thomas, Kullmann, Dimitri. “Oscillatory Multiplexing of Population Codes for Selective Communication in the Mammalian Brain”. Nature Reviews Neuroscience, 15 (2014), 111-122.CrossrefGoogle Scholar

  • Ba, Jimmy, Hinton, Geoffrey, Mnih, Volodymyr, Leibo, Joel and Ionescu, Catalin. “Using Fast Weights to Attend to the Recent Past”. Retrieved from arXiv :1610.06258v3, Dec. 2016.Google Scholar

  • Baars, Bernard. A Cognitive Theory of Consciousness, NY: Cambridge University Press, 1988.Google Scholar

  • Baars, Bernard, Franklin, Stan. “How Conscious Experience and Working Memory Interact”. Trends in Cognitive Science, 7 (2003), 166-172.Google Scholar

  • Baddeley, Alan. “Working Memory and Conscious Awareness”. In Theories of Memory, edited by A. Collins, S. Gattercole, et al., NY: Erlbaum (1993), 11-28.Google Scholar

  • Baddeley, Alan. “Working Memory: Theories, Models and Controversies”. Annual Review of Psychology, 63 (2012), 1-29.Google Scholar

  • Bayne, Tim, Montague, Michelle, eds., Cognitive Phenomenology, Oxford: Oxford University Press, 2011.Google Scholar

  • Bhandari, Apoorva and Badre, David. “A Nimble Working Memory”. Neuron, 91 (2016), 503-505.CrossrefGoogle Scholar

  • Block, Ned. “On a Confusion about a Function of Consciousness”. Behavioral and Brain Sciences, 18 (1995), 227-287.CrossrefGoogle Scholar

  • Block, Ned. “Perceptual Consciousness Overflows Cognitive Access”. Trends in Cognitive Sciences, 15:12 (2011), 567-575.CrossrefGoogle Scholar

  • Bringsjord, Selmer. “Offer: One Billion Dollars for a Conscious Robot; If You’re Honest, You Must Decline”. Journal of Consciousness Studies, 14 (2007), 28-43.Google Scholar

  • Carruthers, Peter. The Centered Mind, Oxford: Oxford University Press, 2015.Google Scholar

  • Chalmers, David. The Conscious Mind, Oxford: Oxford University Press, 1996.Google Scholar

  • Chalmers, David. “What is a Neural Correlate of Consciousness?” In Neural Correlates of Consciousness, edited by T. Metzinger, Cambridge: MIT Press, 17-39, 2000.Google Scholar

  • Chatham, Christopher, Frank, Michael and Badre, David. “Corticostriatal Output Gating during Selection from Working Memory”. Neuron, 81 (2014), 930-942.CrossrefPubMedGoogle Scholar

  • Chella, Antonio and Manzotti, Riccardo. “Machine Consciousness: A Manifesto for Robotics”. International Journal of Machine Consciousness, 1 (2009), 33-51.Google Scholar

  • Chudnoff, Elijah. Cognitive Phenomenology, Routledge Press, 2015.Google Scholar

  • Cleeremans, Axel. “Computational Correlates of Consciousness”. Progress in Brain Research, 150 (2005), 81-98.Google Scholar

  • Cleeremans, Axel, Timmermans, Bert, Pasquali, Antoine. “Consciousness and Metarepresentation: A Computational Sketch”. Neural Networks, 20 (2007), 1032-1039.CrossrefGoogle Scholar

  • Connor, Dustin, Shanahan, Murray. “A Computational Model of a Global Neuronal Workspace with Stochastic Connections”. Neural Networks, 23 (2010), 1139-1154.CrossrefGoogle Scholar

  • Courtney, Susan, Petit, Laurent, Haxby, James and Ungerleider, Leslie. “The Role of Prefrontal Cortex in Working Memory: Examining the Contents of Consciousness”. Philosophical Transactions of the Royal Society of London B, 353 (1998), 1819-1828.Google Scholar

  • Cowan, Nelson, Elliott, Emily, Saults, J. Scott, Morey, Candice, Mattox, Sam, Hismjatullina, Anna, Conway, Andrew. “On the Capacity of Attention: Its Estimation and Its Role in Working Memory and Cognitive Aptitudes”. Cognitive Psychology, 51 (2005), 42-100.CrossrefPubMedGoogle Scholar

  • Crick, Francis. The Astonishing Hypothesis, NY: Charles Scribner’s Sons, 1994.Google Scholar

  • Davis, Greg, Katz, Garrett, Soranzo, Daniel, Costanzo, Michelle, Reinhard, Matthew, Gentili, Rodolphe, Reggia, James. “A Neurocomputational Model of Increased Saccade Latency and BOLD Changes in Posttraumatic Stress Disorder”, submitted, 2019.Google Scholar

  • Dehaene, Stanislas, Naccache, Lionel. “Towards a Cognitive Neuroscience of Consciousness”. Cognition, 79 (2001), 1-37.Google Scholar

  • Fekete, Tomer, Edelman, Shimon. “Towards a Computational Theory of Experience”. Consciousness and Cognition, 20 (2011), 807-827.CrossrefGoogle Scholar

  • Feldman, Jerome. “The Neural Binding Problem”. Cognitive Neurodynamics, 7:1 (2013), 1-11.CrossrefGoogle Scholar

  • Frank, Michael, Loughry, Bryan and O’Reilly, Randall. “Interactions Between Frontal Cortex and Basal Ganglia in Working Memory: A Computational Model”. Cognitive, Affective and Behavioral Neuroscience, 1 (2001), 137-160.Google Scholar

  • Garrett, Brian. “What the History of Vitalism Teaches Us about Consciousness and the ‘Hard Problem’.” Philosophy and Phenomenological Research, 72 (2006), 616-628.Google Scholar

  • Goodfellow, Ian, Bengio, Yoshua and Courville, Aaron. Deep Learning, NY: MIT Press, 2016.Google Scholar

  • Haikonen, Pentti. Consciousness and Robot Sentience, Singapore: World Scientific, 2019.Google Scholar

  • Jorba, Marta, Vincente, Agustin. “Cognitive Phenomenology, Access to Contents, and Inner Speech. Journal of Consciousness Studies, 21:9-10 (2014), 74-99.Google Scholar

  • Katz, Garrett, Davis, Greg, Gentili, Rodolphe, Reggia, James. “A Programmable Neural Virtual Machine Based on a Fast Store-Erase Learning Rule”. Neural Networks, 119 (2019), 10-30.Google Scholar

  • Katz, Garrett, Huang, Di-Wei, Hauge, Theresa, Gentili, Rodolphe and Reggia, James. “A Novel Parsimonious Cause-Effect Reasoning Algorithm for Robot Imitation and Plan Recognition”. IEEE Transactions on Cognition and Developmental Systems, 10 (2018), 177-193.Google Scholar

  • Katz, Garrett, Reggia, James. “Using Directional Fibers to Locate Fixed Points of Recurrent Neural Networks”. IEEE Transaction on Neural Networks and Learning Systems, 29 (2018), 3636-3646.Google Scholar

  • Lara, Antonio and Wallis, Jonathan. “The Role of Prefrontal Cortex in Working Memory: A Mini Review”. Frontiers in Systems Neuroscience. Retrieved from https://doi.org/10.3389/fnsys.2015.00173. Accessed December 18, 2015.Crossref

  • Massimini, Marcello, Ferrarelli, Fabio, Huber, Reto, Esser, Steve, Singh, Harpreet, Tononi, Giulio. “Breakdown of Cortical Effective Connectivity During Sleep”. Science, 309 (2005), 2228-2232.Google Scholar

  • McDermott, Drew. “Artificial Intelligence and Consciousness.” In Cambridge Handbook of Consciousness, edited by M. Moscovitch and E. Thompson, 117-150, Cambridge: Cambridge University Press, 2007.Google Scholar

  • McGinn, Colin. Can We Solve the Mind-Brain Problem? Mind, 98 (1989), 349-366.Google Scholar

  • Metzinger, Thomas. Neural Correlates of Consciousness, NY: MIT Press, 2000.Google Scholar

  • Mongillo, Gianluigi, Barak, Omri and Tsodyks, Mish. “Synaptic Theory of Working Memory”. Science, 319 (2008), 1543-1346.Google Scholar

  • Munkhdali, Tsenduren and Trischler, Adam. “Metalearning with Hebbian Fast Weights”. Retrieved from arXiv: 1807.05076v1, 2018.Google Scholar

  • Nagel, Thomas. “What is it Like to be a Bat?” Philosophical Review, 4 (1974), 435-450.CrossrefGoogle Scholar

  • Pascanu, Razvan and Jaeger, Herbert. “A Neurodynamical Model for Working Memory”. Neural Networks, 24 (2011), 199-207.CrossrefGoogle Scholar

  • Perlis, Don and Brody, Justin. “Operationalizing Consciousness”. AAAI Spring Symposium, Stanford CA, 2019.Google Scholar

  • Persuh, Marjan, LaRock, Eric and Berger, Jacob. “Working Memory and Consciousness: The Current State of Play”. Frontiers in Human Neuroscience. Retrieved from https://doi.org/10.3389/fnhum.2018.00078. Accessed March 2018.Crossref

  • Prentner, Robert. “Process Metaphysics of Consciousness”. Open Philosophy, 2 (2018) 3-13.Google Scholar

  • Prinz, Jesse. The Conscious Brain, Oxford: Oxford University Press, 2012.Google Scholar

  • Reggia, James. “The Rise of Machine Consciousness”. Neural Networks, 44 (2013), 112-131.CrossrefGoogle Scholar

  • Reggia, James, Monner, Derek, Sylvester, Jared. “The Computational Explanatory Gap”. Journal of Consciousness Studies, 21:9 (2014), 153-178.Google Scholar

  • Regis, Ed. What is Life?, NY: Farber, Strauss and Giroux, 2008.Google Scholar

  • Sherman, S. Murray, Guillery, R. Exploring the Thalamus and its Role in Cortical Function, NY: MIT Press, 2006.Google Scholar

  • Singer, Wolf. “Dynamic Formation of Functional Networks by Synchronization”. Neuron, 69 (2011), 191-193.Google Scholar

  • Squire, Larry and Dede, Adam. “Conscious and Unconscious Memory Systems”. Cold Spring Harbor Perspectives in Biology, 7 (2015). Retrieved from DOI:10.1101/cshperspect.a021667.CrossrefGoogle Scholar

  • Sylvester, Jared, Reggia, James, Weems, Scott, Bunting, Michael. “Controlling Working Memory with Learned Instructions”. Neural Networks, 41 (2013), 23-38.CrossrefGoogle Scholar

  • Sylvester, Jared, Reggia, James. “Engineering Neural Systems for High-Level Problem Solving”. Neural Networks, 79 (2016), 37-52.CrossrefGoogle Scholar

  • Takeno, Junichi. Creation of a Conscious Robot, Singapore: Pan Stanford, 2013.Google Scholar

  • Taylor, John. “Neural Networks for Consciousness”. Neural Networks, 10 (1997), 1207-1225.Google Scholar

  • Taylor, John. “CODAM: A Neural Network Model of Consciousness”. Neural Networks, 20 (2007), 983-992.CrossrefGoogle Scholar

  • Van Essen, David. “Corticocortical and Thalamocortical Information Flow in the Primate Visual System”. Progress in Brain Research, 149 (2005), 173-185.Google Scholar

  • Verduzco-Flores, Sergio, Ermentrout, Brad and Bodner, Mark. “Modeling Neuropathologies as Disruption of Normal Sequence Generation in Working Memory Networks”. Neural Networks, 27 (2012), 21-31.CrossrefGoogle Scholar

  • Wolfram, Stephen. A New Kind of Science, Champaign, Illinois: Wolfram Media, 2002.Google Scholar

About the article

Received: 2019-04-06

Accepted: 2019-08-09

Published Online: 2019-09-03

Published in Print: 2019-01-01

Citation Information: Open Philosophy, Volume 2, Issue 1, Pages 252–269, ISSN (Online) 2543-8875, DOI: https://doi.org/10.1515/opphil-2019-0022.

Export Citation

© 2019 James A. Reggia et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in